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Abstract. In this paper we present an experimental study of the prop-
erties of web graphs. We study a large crawl from 2001 of 200M pages and
about 1.4 billion edges made available by the WebBase project at Stan-
ford [19], and synthetic graphs obtained by the large scale simulation of
stochastic graph models for the Webgraph. This work has required the
development and the use of external and semi-external algorithms for
computing properties of massive graphs, and for the large scale simula-
tion of stochastic graph models. We report our experimental findings on
the topological properties of such graphs, describe the algorithmic tools
developed within this project and report the experiments on their time
performance.

1 Introduction

The Webgraph is the graph whose nodes are (static) web pages and edges are
(directed) hyperlinks among them. The Webgraph has been the subject of a large
interest in the scientific community. The reason of such large interest is primarily
given to search engine technologies. Remarkable examples are the algorithms for
ranking pages such as PageRank [4] and HITS [9].

A large amount of research has recently been focused on studying the prop-
erties of the Webgraph by collecting and measuring samples spanning a good
share of the whole Web. A second important research line has been the develop-
ment of stochastic models generating graphs that capture the properties of the
Web. This research work also poses several algorithmic challenges. It requires to
develop algorithmic tools to compute topological properties on graphs of several
billion edges.
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The Webgraph has shown the ubiquitous presence of power law distributions,
a typical signature of scale-free properties. Barabasi and Albert [3]and Kumar
et al [11] suggested that the in-degree of the Webgraph follow a power-law dis-
tribution. Later experiments by Broder et al. [5] on a crawl of 200M pages from
1999 by Altavista confirmed it as a basic property: the probability that the in-
degree of a vertex is i is distributed as Pru[in-degree(u)= i]∝ 1/iγ , for γ ≈ 2.1.
In [5] the out-degree of a vertex was also shown to be distributed according to a
power law with exponent roughly equal to 2.7 with exception of the initial seg-
ment of the distribution. The number of edges observed in the several samples
of the Webgraph is about equal to 7 times the number of vertices.

Broder et. al. [5] also presented a fascinating picture of the Web’s macro-
scopic structure: a bow-tie shape with a core made by a large strongly connected
component (SCC) of about 28% of the vertices. A surprising number of spe-
cific topological structures such as bipartite cliques of relatively small size has
been observed in [11]. The study of such structures is aimed to trace the emer-
gence of hidden cyber-communities. A bipartite clique is interpreted as a core of
such a community, defined by a set of fans, each fan pointing to a set of cen-
ters/authorities for a given subject, and a set of centers, each pointed by all the
fans. Over 100,000 such communities have been recognized [11] on a sample of
200M pages on a crawl from Alexa of 1997.

The Google search engine is based on the popular PageRank algorithm first
introduced by Brin and Page [4]. The PageRank distribution has a simple in-
terpretation in terms of a random walk in the Webgraph. Assume the walk has
reached page p. The walk then continues either by following with probability 1−c
a random link in the current page, or by jumping with probability c to a ran-
dom page. The correlation between the distribution of PageRank and in-degree
has been recently studied in a work of Pandurangan, Raghavan and Upfal [15].
They show by analyzing a sample of 100,000 pages of the brown.edu domain
that PageRank is distributed with a power law of exponent 2.1. This exactly
matches the in-degree distribution, but very surprisingly it is observed very lit-
tle correlation between these quantities, i.e., pages with high in-degree may have
low PageRank.

The topological properties observed in the WebGraph, as for instance the
in-degree distribution, cannot be found in the traditional random graph model
of Erdös and Rényi (ER) [7]. Moreover, the ER model is a static model, while
the Webgraph evolves over time when new pages are published or are removed
from the Web.

Albert, Barabasi and Jeong [1] initiated the study of evolving networks by
presenting a model in which at every discrete time step a new vertex is inserted in
the graph. The new vertex connects to a constant number of previously inserted
vertices chosen according to the preferential attachment rule, i.e. with probability
proportional to the in-degree. This model shows a power law distribution over
the in-degree of the vertices with exponent roughly 2 when the number of edges
that connect every vertex to the graph is 7. In the following sections we refer to
this model as the Evolving Network (EN) model.
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The Copying model has been later proposed by Kumar et al. [10] to explain
other relevant properties observed in the Webgraph. For every new vertex enter-
ing the graph a prototype vertex p it is selected at random. A constant number
d of links connect the new vertex to previously inserted vertices. The model is
parameterized on a copying factor α. The end-point of a link is either copied
with probability α from a link of the prototype vertex p, or it is selected at ran-
dom with probability 1 − α. The copying event aims to model the formation of
a large number of bipartite cliques in the Webgraph. In our experimental study
we consider the linear [10] version of this model, and we refer to it simply as the
Copying model.

More models of the Webgraph are presented by Pennock et al. [16], Cal-
darelli et al. [12], Panduragan, Raghavan and Upfal [15], Cooper and Frieze [6].
Mitzenmacher [14] presents an excellent survey of generative models for power-
law distributions. Bollobás and Riordan [2] study vulnerability and robustness
of scale-free random graphs. Most of the models presented in the literature gen-
erate graphs without cycles. Albert et al. [1] amongst others proposed to rewire
part of the edges introduced in previous steps to induce links in the graphs.

Outline of the paper. We present an extensive study of the statistical prop-
erties of the Webgraph by analyzing a crawl of about 200M pages collected in
2001 by the WebBase project at Stanford [19] and made available for our study.
The experimental findings on the structure of the WebBase crawl are presented
in Section 2.

We also report new properties of some stochastic graph models for the We-
bgraph presented in the literature. In particular, in Section 3, we study the
distribution of the size and of the number of strongly connected components.

This work has required the development of semi-external memory [18] algo-
rithms for computing disjoint bipartite cliques of small size, external memory
algorithms [18] based on the ideas of [8] for computing PageRank, and the large
scale simulation of stochastic graph models. Moreover, we use the semi-external
algorithm developed in [17] for computing Strongly Connected Components. The
algorithms and the experimental evaluation of their time performances are pre-
sented in Section 4. A detailed description of the software tools developed within
this project can be found [13].

2 Analysis of the WebBase Crawl

We conducted our experiments on a 200M nodes crawl collected from the Web-
Base project at Stanford [19] in 2001.

The in-degree distribution follows a power law with γ = 2.1. This confirms
the observations done on the crawl of 1997 from Alexa [11], the crawl of 1999
from Altavista [5] and the notredame.edu domain [3].

In Figure 1 the out-degree distribution of the WebBase crawl is shown. While
the in-degree distribution is fitted with a power law, the out-degree is not, even
for the final segment of the distribution. A deviation from a power law for the
initial segment of the distribution was already observed in the Altavista crawl [5].
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Fig. 1. Out-degree distribution of the
Web Base crawl

Fig. 2. The number of bipartite cliques
(i, j) in the Web Base crawl

We computed the PageRank distribution of the WebBase crawl. Here, we
confirm the observation of [15] by showing this quantity distributed according
to a power-law with exponent γ = 2.109. We also computed the statistical corre-
lation between PageRank and in-degree. We obtained a value of −5.2E −6, on a
range of variation in [−1, 1] from negative to positive correlation. This confirms
on much larger scale the observation done by [15] on the brown.edu domain of
100,000 pages that the correlation between the two measures is not significant.

In Figure 2 the graphic of the distribution of the number of bipartite cliques
(i, j), with i, j = 1, . . . , 10 is shown. The shape of the graphic follows that one
presented by Kumar et al. [11] for the 200M crawl by Alexa. However, we detect
a number of bipartite cliques of size (4, j) that differs from the crawl from Alexa
for more than one order of magnitude. A possible (and quite natural) explana-
tion is that the number of cyber-communities has consistently increased from
1997 to 2001. A second possible explanation is that our algorithm for finding
disjoint bipartite cliques, which is explained in 4.1, is more efficient than the one
implemented in [11].

3 Strongly Connected Components

Broder et al. [5] identified a very large strongly connected component of about
28% of the entire crawl. The Evolving Network and the Copying model do not
contain cycles and hence not even a single strongly connected component. We
therefore modified the EN and the Copying model by rewiring a share of the
edges. The process consists of adding edges whose end-points are chosen at ran-
dom. The experiment consisted in rewiring a number of edges ranging from 1%
to 300% of the number of vertices in the graph. Recall that these graphs contain
7 times as many edges as the vertices.

The most remarkable observation is that, differently from the Erdös-Renyi
model, we do not observe any threshold phenomenon in the emerging of a large
SCC. This is due to the existence of a number of vertices of high in-degree in a
graph with in-degree distributed according to a power law. Similar conclusions
are also formally obtained for scale-free undirected graphs by Bollobas and Ri-
ordan [2]. In a classical random graph, it is observed the emerging of a giant
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connected component when the number of edges grows over a threshold that is
slightly more than linear in the number of vertices. We observe the size of the
largest SCC to increase smoothly with the number of edges that are rewired
up to span a big part of the graph. We also observe that the number of SCCs
decreases smoothly with the increase of the percentage of rewired edges. This
can be observed in Figure 3 for the Copying model on a graph of 10M vertices.
A similar phenomenon is observed for the Evolving Network model.

Fig. 3. Number and size of SCCs −
(Copying Model)

Fig. 4. The time performance of the
computation of disjoint cliques (4, 4)

Devising strongly connected components in a graph stored on secondary
memory is a non-trivial task for which we used a semi-external algorithm devel-
oped in [17]. This algorithm together with its time performance is described in
Section 4.

4 Algorithms for Analyzing and Generating Web Graphs

In this section we present the external and semi-external memory algorithms
we developed and used in this project for analyzing massive Webgraphs and
their time performance. Moreover, we will present some of the algorithmic issues
related to the large scale simulation of stochastic graph models.

For measuring the time performance of the algorithms we have generated
graphs according to the Copying and the Evolving Network model. In particular,
we have generated graphs of size ranging from 100,000 to 50M vertices with
average degree 7, and rewired a number of edges equal to 50% and 200% of the
vertices. The presence of cycles is fundamental for both computing SCCs and
PageRank. This range of variation is sufficient to assess the asymptotic behavior
of the time performance of the algorithms. In our time analysis we computed
disjoint bipartite cliques of size (4, 4), the size for which the computational task
is more difficult.

The analysis of the time complexity of the algorithms has been performed by
restricting the main memory to 256MB for computing disjoint bipartite cliques
and PageRank. For computing strongly connected components, we have used
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1GB of main memory to store a graph of 50M vertices with 12.375 bytes per
vertex. Figures 4, 5 and 6 show the respective plots. The efficiency of these ex-
ternal memory algorithms is shown by the linear growth of the time performance
whenever the graph does not fit in main memory. More details about the data
structures used in the implementation of the algorithms are given later in the
section.

Fig. 5. The time performance of the
computation of PageRank

Fig. 6. The time performance of the
computation of SCCs

4.1 Disjoint Bipartite Cliques

In [11] an algorithm for enumerating disjoint bipartite cliques (i, j) of size at
most 10 has been presented, with i being the fan vertices on the left side and j
being the center vertices on the right side. The algorithm proposed by Kumar
et al. [11] is composed of a pruning phase that consistently reduces the size of
the graph in order to store it in main memory. A second phase enumerates all
bipartite cliques of the graph. A final phase selects a set of bipartite cliques that
form the solution. Every time a new clique is selected, all intersecting cliques are
discarded. Two cliques are intersecting if they have a common fan or a common
center. A vertex can then appear as a fan in a first clique and as a center in a
second clique.

In the following, we describe our semi-external heuristic algorithm for com-
puting disjoint bipartite cliques. The algorithm searches bipartite cliques of a
specific size (i, j).

Two n-bit arrays Fan and Center, stored in main memory, indicate with
Fan(v) = 1 and Center(v) = 1 whether fan v or center v has been removed from
the graph. We denote by I(v) and O(v) the list of predecessors and successors
of vertex v. Furthermore, let Ĩ(v) be the set of predecessors of vertex v with
Fan(·) = 0, and let Õ(v) the set of successors of vertex v with Center(·) = 0.
Finally, let T [i] be the first i vertices of an ordered set T .

We first outline the idea underlying the algorithm. Consider a fan vertex v
with at least j successors with Center(·) = 0, and enumerate all size j subsets
of Õ(v). Let S be one such subset of j vertices. If | ∩u∈S I(u)| ≥ i then we have
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detected an (i, j) clique. We remove the fan and the center vertices of this clique
from the graph. If the graph is not entirely stored in main memory, the algorithm
has to access the disk for every retrieval of the list of predecessors of a vertex of
O(v). Once the exploration of a vertex has been completed, the algorithm moves
to consider another fan vertex.

In our semi-external implementation, the graph is stored on secondary mem-
ory in a number of blocks. Every block b, b = 1, ..., �N/B�, contains the list of
successors and the list of predecessors of B vertices of the graph. Denote by b(v)
the block containing vertex v, and by B(b) the vertices of block b. We start by
analyzing the fan vertices from the first block and proceed until the last block.
The block currently under examination is moved to main memory. Once the last
block has been examined, the exploration continues from the first block.

We start the analysis of a vertex v when block b(v) is moved to main memory
for the first time. We start considering all subsets S of Õ(v) formed by vertices
of block b(v). However, we also have to consider those subsets of Õ(v) containing
vertices of other blocks, for which the list of predecessors is not available in main
memory. For this purpose, consider the next block b′ that will be examined that
contains a vertex of Õ(v). We store Õ(v) and the lists of predecessors of the
vertices of Õ(v) ∩ B(b) into an auxiliary file A(b′) associated with vertex b′.
We actually buffer the access to the auxiliary files. Once the buffer of block b
reaches a given size, this is moved to the corresponding auxiliary file A(b). In the
following we abuse notation by denoting with A(b) also the set of fan vertices v
whose exploration will continue with block b.

When a block b is moved to main memory, we first seek to continue the
exploration from the vertices of A(b). If the exploration of a vertex v in A(b)
cannot be completed within block b, the list of predecessors of the vertices of
Õ(v) in blocks from b(v) to block b are stored into the auxiliary file of the next
block b′ containing a vertex of Õ(v). We then move to analyze the vertices B(b)
of the block. We keep on doing this till all fan and center vertices have been
removed from the graph. It is rather simple to see that every block is moved to
main memory at most twice.

The core algorithm is preceded by two pruning phases. The first phase re-
moves vertices of high degree as suggested in [11] since the objective is to detect
cores of hidden communities. In a second phase, we remove vertices that cannot
be selected as fans or centers of an (i, j) clique.

Phase I. Remove all fans v with |O(v)| ≥ 50 and all centers v with |I(v)| ≥ 50.

Phase II. Remove all fans v with |Õ(v)| < i and all centers with |Ĩ(v)| < j.

When a fan or a center is removed in Phase II, the in-degree or the out-degree
of a vertex is also reduced and this can lead to further removal of vertices. Phase
II is carried on few times till only few vertices are removed. Phases I and II can
be easily executed in a streaming fashion as described in [11]. After the pruning
phase, the graph of about 200M vertices is reduced to about 120M vertices.
About 65M of the 80M vertices that are pruned belong to the border of the
graph, i.e. they have in-degree 1 and out-degree 0.
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We then describe the algorithm to detect disjoint bipartite cliques.

Phase III.

1. While there is a fan vertex v with Fan(v) = 0
2. Move to main memory the next block b to be examined.
3. For every vertex v ∈ A(b) ∪ B(b) such that |Õ(v)| ≥ j

3.1 For every subset S of size j of Õ(v), with the list of predecessors of
vertices in S stored either in the auxiliary file A(b) or in block b:

3.2 If |T = ∩u∈S Ĩ(u)| ≥ i then
3.2.1 output clique (T [i], S)
3.2.2 set Fan(·) = 1 for all vertices of T [i]
3.2.3 set Center(·) = 1 for all vertices of S

Figure 4 shows the time performance of the algorithm for detecting disjoint
bipartite cliques of size (4, 4) on a system with 256 MB. 70 MB are used by the
operating system, including operating system’s cache. We reserve 20MB for the
buffers of the auxiliary files. We maintain 2 bit information Fan(·) and Center(·)
for every vertex, and store two 8bytes pointer to the list of successors and the
list of predecessors of every vertex. Every vertex in the list of adjacent vertices
requires 4 bytes. The graph after the pruning has average out/in 8.75. Therefore,
on the average, we need about 0.25N + B(2 × 8 + 17.5 × 4) bytes for a graph of
N vertices and block size B. For a graph of 50M vertices this results in a block
size of 1.68M vertices. We performed our experiments with a block size of 1M
vertices. We can observe the time performance to converge to a linear function
for graphs larger than this size.

4.2 PageRank

The computation of PageRank is expressed in matrix notation as follows. Let N
be the number of vertices of the graph and let n(j) be the out-degree of vertex
j. Denote by M the square matrix whose entry Mij has value 1/n(j) if there is
a link from vertex j to vertex i. Denote by [ 1

N ]N×N the square matrix of size
N × N with entries 1

N . Vector Rank stores the value of PageRank computed
for the N vertices. A matrix M ′ is then derived by adding transition edges of
probability (1 − c)/N between every pair of nodes to include the possibility of
jumping to a random vertex of the graph:

M ′ = cM + (1 − c) × [
1
N

]N×N

A single iteration of the PageRank algorithm is

M ′ × Rank = cM × Rank + (1 − c) × [
1
N

]N×1

We implement the external memory algorithm proposed by Haveliwala [8].
The algorithm uses a list of successors Links, and two arrays Source and Dest
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that store the vector Rank at iteration i and i + 1. The computation proceeds
until either the error r = |Source − Dest| drops below a fixed value τ or the
number of iterations exceed a prescribed value.

Arrays Source and Dest are partitioned and stored into β = �N/B� blocks,
each holding the information on B vertices. Links is also partitioned into β
blocks, where Linksl, l = 0, ..., β −1, contains for every vertex of the graph only
those successors directed to vertices in block l, i.e. in the range [lB, (l+1)B −1].
We bring to main memory one block of Dest per time. Say we have the ith
block of Dest in main memory. To compute the new PageRank values for all
the nodes of the ith block we read, in a streaming fashion, both array Source
and Linksi. From array Source we read previous Pagerank values, while from
Linksi we have the list of successors (and the out-degree) for each node of the
graph to vertices of block i, and these are, from the above Pagerank formula,
exactly all the information required.

The main memory occupation is limited to one float for each node in the
block, and, in our experiments, 256MB allowed us to keep the whole Dest in
memory for a 50M vertices graph. Only a small buffer area is required to store
Source and Links, since they are read in a streaming fashion. The time perfor-
mance of the execution of the algorithm on our synthetic benchmark is shown
in Figure 5.

4.3 Strongly Connected Components

It is a well-known fact that SCCs can be computed in linear time by two rounds
of depth-first search (DFS). Unfortunately, so far there are no worst-case efficient
external-memory algorithms to compute DFS trees for general directed graphs.
We therefore apply a recently proposed heuristic for semi-external DFS [17].
It maintains a tentative forest which is modified by I/O-efficiently scanning
non-tree edges so as to reduce the number of cross edges. However, this idea
does not easily lead to a good algorithm: algorithms of this kind may continue
to consider all non-tree edges without making (much) progress. The heuristic
overcomes these problems to a large extent by:

– initially constructing a forest with a close to minimal number of trees;
– only replacing an edge in the tentative forest if necessary;
– rearranging the branches of the tentative forest, so that it grows deep faster

(as a consequence, from among the many correct DFS forests, the heuristic
finds a relatively deep one);

– after considering all edges once, determining as many nodes as possible that
have reached their final position in the forest and reducing the set of graph
and tree edges accordingly.

The used version of the program accesses at most three integer arrays of
size N at the same time plus three boolean arrays. With four bytes per integer
and one bit for each boolean, this means that the program has an internal
memory requirement of 12.375 · N bytes. The standard DFS needs to store 16 ·
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avg − degree · N bytes or less if one does not store both endpoints for every
edge. Therefore, under memory limitations, standard DFS starts paging at a
point when the semi-external approach still performs fine. Figure 6 shows the
time performance of the algorithm when applied to graphs generated according
to the EN and the Copying model.

4.4 Algorithms for Generating Massive Webgraphs

In this section we present algorithms to generate massive Webgraphs. We con-
sider the Evolving Network model and the Copying model. When generating a
graph according to a specific model, we fix in advance the number of nodes N
of the simulation. The outcome of the process is a graph stored in secondary
memory as list of successors.

Evolving Network model. For the EN model we need to generate the end-
point of an edge with probability proportional to the in-degree of a vertex. The
straightforward approach is to keep in main memory a N -element array i[] where
we store the in-degree for each generated node, so that i[k] = indegree(vk) + 1
(the plus 1 is necessary to give to every vertex an initial non-zero probability to
be chosen as end-point). We denote by g the number of vertices generated so far
and by I the total in-degree of the vertices v1 . . . vg plus g, i.e. I =

∑g
j=1 i[j]. We

randomly (and uniformly) generate a number r in the interval (1 . . . I); then, we
search for the smallest integer k such that r ≤ ∑k

j=1 i[j]. For massive graphs,
this approach has two main drawbacks: i.) We need to keep in main memory the
whole in-degree array to speed up operations; ii.) We need to quickly identify
the integer k.

To overcome both problems we partition the set of vertices in
√

N blocks.
Every entry of a

√
N -element array S contains the sum of the i[] values of a

block, i.e. S[l] contains the sum of the elements in the range i[l�√N�+1] . . . i[(l+
1) · �√N�]. To identify in which block the end-point of an edge is, we need to
compute the smallest k′ such that r ≤ ∑k′

j=1 S[j].
The algorithm works by alternating the following 2 phases:

Phase I. We store in main memory tuples corresponding to pending edges,
i.e. edges that have been decided but not yet stored. Tuple t =< g, k′, r −
∑k′−1

j=1 S[j] > associated with vertex g, maintains the block number k′ and the
relative position of the endpoint within the block. We also group together the
tuples referring to a specific block. We switch to phase II when a sufficiently
large number of tuples has been generated.

Phase II. In this phase we generate the edges and we update the information on
disk. This is done by considering, in order, all the tuples that refer to a single
block when this is moved to main memory. For every tuple, we find the pointed
node and we update the information stored in i[]. The list of successors is also
stored as the graph is generated.

In the real implementation we use multiple levels of blocks, instead of only
one, in order to speed up the process of finding the endpoint of an edge. An



Algorithms and Experiments for the Webgraph 713

alternative is the use of additional data structures to speed up the process of
identifying the position of the node inside the block.

Copying model. The Copying model is parameterized with a copying factor
α. Every new vertex u inserted in the graph by the Copying model is connected
with d edges to previously existing vertices. A random prototype vertex p is also
selected. The endpoint of the lth outgoing edge of vertex u, l = 1, . . . , d, is either
copied with probability α from the endpoint of the lth outgoing link of vertex p,
or chosen uniformly at random among the existing nodes with probability 1−α.

A natural strategy would be to generate the graph with a batch process that,
alternately, i) generates edges and writes them to disk and ii) reads from disk
the edges that need to be “copied”. This clearly requires an access to disk for
every newly generated vertex.

In the following we present an I/O optimal algorithm that does not need
to access the disk to obtain the list of successors of the prototype vertex. We
generate for every node 1 + 2 · d random integers: one for the choice of the
prototype vertex, d for the endpoints chosen at random, and d for the values of
α drawn for the d edges. We store the seed of the random number generator at
fixed steps, say every x generated nodes.

When we need to copy an edge from a prototype vertex p, we step back to
the last time when the seed has been saved before vertex p has been generated,
and let the computation progress until the outgoing edges of p are recomputed;
for an appropriate choice of x, this sequence of computations is still faster than
accessing the disk. Observe that p might also have copied some of its edges. In
this case we recursively refer to the prototype vertex of p. We store the generated
edges in a memory buffer and write it to disk when complete.

5 Conclusions

In this work we have presented algorithms and experiments for the Webgraph.
We plan to carry on these experiments on more recent crawls of the Webgraph
in order to assess the temporal evolution of its topological properties. We will
also try to get access to the Alexa sample [11] and execute on it our algorithm
for disjoint bipartite cliques.
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