
I/O-Efficient Undirected Shortest Paths

Ulrich Meyer1,� and Norbert Zeh2,��

1 Max-Planck-Institut für Informatik, Stuhlsatzhausenweg 85, 66123 Saarbrücken,
Germany.

2 Faculty of Computer Science, Dalhousie University, 6050 University Ave, Halifax,
NS B3H 1W5, Canada.

Abstract. We present an I/O-efficient algorithm for the single-source
shortest path problem on undirected graphs G = (V, E). Our algorithm
performs O(

√
(V E/B) log2(W/w) + sort(V + E) log log(V B/E)) I/Os1,

where w ∈ R
+ and W ∈ R

+ are the minimal and maximal edge weights in
G, respectively. For uniform random edge weights in (0, 1], the expected
I/O-complexity of our algorithm is O(

√
V E/B + ((V + E)/B) log2 B +

sort(V + E)).

1 Introduction

The single-source shortest path (SSSP) problem is a fundamental combinatorial
optimization problem with numerous applications. It is defined as follows: Let
G be a graph, let s be a distinguished vertex of G, and let ω be an assignment
of non-negative real weights to the edges of G. The weight of a path is the sum
of the weights of its edges. We want to find for every vertex v that is reachable
from s, the weight dist(s, v) of a minimum-weight (“shortest”) path from s to v.

The SSSP-problem is well-understood as long as the whole problem fits into
internal memory. For larger data sets, however, classical SSSP-algorithms per-
form poorly, at least on sparse graphs: Due to the unpredictable order in which
vertices are visited, the data is moved frequently between fast internal memory
and slow external memory; the I/O-communication becomes the bottleneck.

I/O-model and previous results. We work in the standard I/O-model
with one (logical) disk [1]. This model defines the following parameters:2 N is
the number of vertices and edges of the graph (N = V + E), M is the number
of vertices/edges that fit into internal memory, and B is the number of ver-
tices/edges that fit into a disk block. We assume that 2B < M < N . In an
Input/Output operation (or I/O for short), one block of data is transferred be-
tween disk and internal memory. The measure of performance of an algorithm
is the number of I/Os it performs. The number of I/Os needed to read N con-
tiguous items from disk is scan(N) = Θ(N/B). The number of I/Os required to
� Partially supported by EU programme IST-1999-14186 and DFG grant SA 933/1-1.

�� Part of this work was done while visiting the Max-Planck-Institut in Saarbrücken.
1 sort(N) = Θ((N/B) logM/B(N/B)) is the I/O-complexity of sorting N data items.
2 We use V and E to denote the vertex and edge sets of G as well as their sizes.

G. Di Battista and U. Zwick (Eds.): ESA 2003, LNCS 2832, pp. 434–445, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 824.882] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

I/O-Efficient Undirected Shortest Paths 435

sort N items is sort(N) = Θ((N/B) logM/B(N/B)) [1]. For all realistic values of
N , B, and M , scan(N) < sort(N) � N .

External-memory graph algorithms have received considerable attention
in recent years; see the surveys of [10,13]. Despite these efforts, only little
progress has been made on the SSSP-problem: The best known lower bound is
Ω(sort(V +E)) I/Os, while the currently best algorithm, by Kumar and Schwabe
[8], performs O(V + (E/B) log2(V/B)) I/Os. For E = O(V), this is hardly bet-
ter than näıvely running Dijkstra’s internal-memory algorithm [6,7] in external
memory, which would take O(V log2 V + E) I/Os. Improved external-memory
SSSP-algorithms exist for restricted graph classes such as planar graphs, grid
graphs, and graphs of bounded treewidth; see [14] for an overview.

A number of improved internal-memory SSSP-algorithms have been proposed
for bounded integer/float weights or bounded ratio W/w, where w ∈ R

+ and
W ∈ R

+ are the minimal and maximal edge weights in G, respectively; see [11,
12] for an overview. For W/w = 1, SSSP becomes breadth-first search (BFS). A
simple extension of the first o(V)-I/O algorithm for undirected BFS [9] yields an
SSSP-algorithm that performs O(

√
V EW/B +W · sort(V +E)) I/Os for integer

weights in [1, W]. Obviously, W must be significantly smaller than B for this
algorithm to be efficient. Furthermore, the algorithm requires that BW < M .

The only paper addressing the average-case I/O-complexity of SSSP [5] is
restricted to random graphs with random edge weights. It reduces the I/O-
complexity exclusively by exploiting the power of independent parallel disks; on
a single disk, the performance of the algorithm is no better than that of [8].

New Results. We propose a new SSSP-algorithm for undirected graphs.
The I/O-complexity of our algorithm is O(

√
(V E/B) log2(W/w)+sort(V +E))

with high probability or O(
√

(V E/B) log2(W/w)+ sort(V +E) log log(V B/E))
deterministically, where w ∈ R

+ and W ∈ R
+ are the minimal and maximal edge

weights in G, respectively. Compared to the solution of [9], the new algorithm
exponentially increases the range of efficiently usable edge weights, while only
requiring that M = Ω(B).3 These results hold for arbitrary graph structures
and edge weights between w and W . For uniform random edge weights in (0, 1],
the average-case I/O-complexity of our algorithm reduces to O(

√
V E/B+((V +

E)/B) log2 B + sort(V + E)). For sparse graphs, this matches the I/O-bound of
the currently best BFS-algorithm.

2 Preliminaries and Outline

As previous I/O-efficient SSSP-algorithms [8,9], our algorithm is an I/O-efficient
version of Dijkstra’s algorithm [6]. Dijkstra’s algorithm uses a priority queue Q
to store all vertices of G that have not been settled yet (a vertex is said to be
settled when its distance from s has been determined); the priority of a vertex
v in Q is the length of the currently shortest known path from s to v. Vertices
3 In this extended abstract, we assume that M = Ω(B log2(W/w)), to simplify the

exposition.

436 U. Meyer and N. Zeh

are settled one-by-one by increasing distance from s. The next vertex v to be
settled is retrieved from Q using a DeleteMin operation. Then the algorithm
relaxes the edges between v and all its non-settled neighbors, that is, performs a
DecreaseKey(w, dist(s, v)+ω(v, w)) operation for each such neighbor w whose
priority is greater than dist(s, v) + ω(v, w).

An I/O-efficient version of Dijkstra’s algorithm has to (a) avoid accessing
adjacency lists at random, (b) deal with the lack of optimal DecreaseKey op-
erations in current external-memory priority queues, and (c) efficiently remember
settled vertices. The previous SSSP-algorithms of Kumar and Schwabe [8], KS
for short, and Mehlhorn and Meyer [9], MM, address these issues as follows:
KS ignores (a) and spends Ω(1) I/Os on retrieving the adjacency list of each
settled vertex. MM, on the other hand, forms clusters of vertices and loads the
adjacency lists of all vertices in a cluster into a “hot pool” of edges as soon as
the first vertex in the cluster is settled. In order to relax the edges incident to
settled vertices, the hot pool is scanned and all relevant edges are relaxed.

As for (b), KS uses a tournament tree, whereas MM applies a cyclic bucket
queue composed of 2W + 1 lists. Both support batched processing and emulate
Insert and DecreaseKey operations using a weaker Update operation, which
decreases the priority of the element if it is already stored in the priority queue
and otherwise inserts the element into the priority queue.

As for (c), KS performs an Update operation for every neighbor of a settled
vertex, which eliminates the need to remember previously settled vertices, but
may re-insert settled vertices into the priority queue Q. Kumar and Schwabe call
the latter a spurious update. Using a second priority queue Q∗, these re-inserted
vertices are removed from Q before they can be settled for a second time.4 In
contrast, MM deals with (c) by using half of its lists to identify settled vertices;
Update operations are performed only for non-settled vertices.

Our new approach inherits ideas from both algorithms: As KS, we use a
second priority queue to eliminate the effect of spurious updates. But we replace
the tournament tree used by KS with a hierarchical bucket queue (Section 3),
which, in a way, is an I/O-efficient version of the integer priority queue of [2].
Next we observe that the relaxation of edges of large weight can be delayed
because if such an edge is on a shortest path, it takes some time before its other
endpoint is settled. Hence, we extend MM’s combination of clustering and hot
pools to use a hierarchy of hot pools and gather long edges in hot pools that
are touched much less frequently than the pools containing short edges. As we
show in the full paper, already this idea alone works well on graphs with random
edge weights. We obtain a worst-case guarantee for the I/O-complexity of our
algorithm by storing even short edges in pools that are touched infrequently; we
shift these edges to pools that are touched more and more frequently the closer
the time of their relaxation draws. To make this work, we form clusters in a
locality-preserving manner, essentially guaranteeing that a vertex is closer to its
neighbors in the same cluster than to its neighbors in other clusters (Section 4.1).

4 The algorithm of [8] does not handle adjacent vertices with the same distance from
s correctly. In the full paper, we provide a correct solution to this problem.

I/O-Efficient Undirected Shortest Paths 437

To predict the time of relaxation of every edge during the shortest path phase
of the algorithm (Section 4.2), we use an explicit representation of the structure
of each cluster, which is computed during the clustering phase.

Our clustering approach is similar to the one used in Thorup’s linear-time
SSSP-algorithm [12]. However, the precise definition of the clusters and their use
during the shortest path phase of the algorithm differ from Thorup’s, mainly
because our goals are different. While we try to avoid random accesses by clus-
tering nodes and treating their adjacency lists as one big list, Thorup’s goal is to
beat the sorting bound inherent in Dijkstra’s algorithm by relaxing the order in
which vertices are visited. Arguably, this makes the order in which the vertices
are visited even more random.

3 An Efficient Batched Integer Priority Queue

In this section, we describe a simple batched integer priority queue Q, which
can be seen as an I/O-efficient version of the integer priority queue of [2]. It
supports Update, Delete, and BatchedDeleteMin operations. The first two
operations behave as on a tournament tree; the latter retrieves all elements with
minimal priority from Q. For the correctness of our data structure, the priority of
an inserted or updated element has to be greater than the priority of the elements
retrieved by the last BatchedDeleteMin operation. Let C be a bound so
that, at all times, the difference between the minimum and maximum priorities
of the elements in Q is at most C. Then Q supports the above operations in
O((log2 C + logM/B(N/B))/B) I/Os amortized.

Q consists of r = 1 + log2 C buckets. Each such bucket is represented by
two sub-buckets Bi and Ui. The buckets are defined by splitter elements s0 ≤
s1 ≤ · · · ≤ sr = ∞. Every entry (x, px) in Bi, representing an element x with
priority px, satisfies si−1 ≤ px < si. Initially, we set s0 = 0 and, for 1 ≤ i < r,
si = 2i−1. We refer to si − si−1 as the size of bucket Bi. These bucket sizes may
change during the algorithm; but we enforce that, at all times, bucket B1 has
size at most 1, and bucket Bi, 1 < i < r, has size 0 or a size between 2i−2/3
and 2i−2. We use buckets U1, . . . ,Ur to perform updates in a batched manner.
In particular, bucket Ui stores updates to be performed on buckets Bi, . . . ,Br.

An Update or Delete operation inserts itself into U1, augmented with
a time stamp. A BatchedDeleteMin operation reports the contents of B1,
after filling it with elements from B2, . . . ,Br as follows: We iterate over buckets
B1, . . . ,Bi, applying the updates in U1, . . . ,Ui to B1, . . . ,Bi, until we find the first
bucket Bi that is non-empty after these updates. We split the priority interval of
Bi into intervals for B1, . . . ,Bi−1, assign an empty interval to Bi, and distribute
the elements of Bi over B1, . . . ,Bi−1, according to their priorities.

To incorporate the updates in U1, . . . ,Ui into B1, . . . ,Bi, we sort the updates
in U1 by their target elements and time stamps and repeat the following for
1 ≤ j ≤ i: We scan Uj and Bj , to update the contents of Bj . If a deletion
in Uj matches an existing element in Bj , we remove this element from Bj . If an
Update(x, px) operation in Uj matches an element (x, p′

x) in Bj and px < p′
x, we

438 U. Meyer and N. Zeh

replace (x, p′
x) with (x, px) in Bj . If element x is not in Bj , but sj−1 ≤ px < sj , we

insert (x, px) into Bj . If there are Update and Delete operations matching the
same element in Bj , we decide by the time stamps which action is to be taken.
After these updates, we copy appropriate entries to Uj+1, maintaining their
sorted order: We scan Uj and Uj+1 and insert every Update(x, px) operation
in Uj with px ≥ sj into Uj+1; for every Delete(x) or Update(x, px) operation
with px < sj , we insert a Delete(x) operation into Uj+1. (The latter ensures
that Update operations do not re-insert elements already in Q.)

To compute the new priority intervals for B1, . . . ,Bi−1, we scan Bi and find
the smallest priority p of the elements in Bi; we define s0 = p and, for 1 ≤ j ≤
i − 1, sj = min{p + 2j−1, si}. Note that every Bj , 1 ≤ j < i, of non-zero size has
size 2j−2, except the last such Bh, whose size can be as small as 1. If the size of
Bh is less than 2h−2/3, we redefine sh−1 = sh − 2h−2/3; this increases the size
of Bh to 2h−2/3 and leaves Bh−1 with a size between 2h−3/3 and 2h−3.

To distribute the elements of Bi over B1, . . . ,Bi−1, we repeat the following
for j = i, i − 1, . . . , 2: We scan Bj , remove all elements that are less than sj−1
from Bj , and insert them into Bj−1.

The I/O-complexity of an Update or Delete operation is O(1/B) amor-
tized, because these operations only insert themselves into U1. To analyze the
I/O-complexity of a BatchedDeleteMin operation, we observe that every el-
ement is involved in the sorting of U1 only once; this costs O(logM/B(N/B)/B)
I/Os amortized per element. When filling empty buckets B1, . . . ,Bi−1 with the
elements of Bi, every element in Bi moves down at least one bucket and will
never move to a higher bucket again. If an element from Bi moves down x buck-
ets, it is scanned 1 + x times. Therefore, the total number of times an element
from B1, . . . ,Br can be scanned before it reaches B1 is at most 2r = O(log2 C).
This costs O((log2 C)/B) I/Os amortized per element.

Emptying bucket Ui involves the scanning of buckets Ui, Ui+1, and Bi. In the
full paper, we prove that every element in Ui and Ui+1 is involved in at most
two such emptying processes of Ui before it moves to a higher bucket; every
element in Bi is involved in only one such emptying process before it moves to
a lower bucket. By combining our observations that every element is involved
in the sorting of U1 at most once and that every element is touched only O(1)
times per level in the bucket hierarchy, we obtain the following lemma.

Lemma 1. There exists an integer priority queue Q that processes a sequence
of N Update, Delete, and BatchedDeleteMin operations in O(sort(N) +
(N/B) log2 C) I/Os, where C is the maximal difference between the priorities of
any two elements stored simultaneously in the priority queue.

The following lemma, proved in the full paper, follows from the lower bound
on the sizes of non-empty buckets. It is needed by our shortest path algorithm.

Lemma 2. Let p be the priority of the entries retrieved by a BatchedDelete-
Min operation, and consider the sequence of all subsequent BatchedDelete-
Min operations that empty buckets Bh, h ≥ i, for some i ≥ 2. Let p1, p2, . . . be the
priorities of the entries retrieved by these operations. Then pj−p ≥ (j−4)2i−2/3.

I/O-Efficient Undirected Shortest Paths 439

Note that we do not use that the priorities of the elements in Q are integers.
Rather, we exploit that, if these priorities are integers, then p > p′ implies p ≥
p′+1, which in turn implies that after removing elements from B1, all subsequent
insertions go into B2, . . . ,Br. Hence, we can also use Q for elements with real
priorities, as long as BatchedDeleteMin operations are allowed to produce
a weaker output and Update operations satisfy a more stringent constraint on
their priorities. In particular, it has to be sufficient that the elements retrieved
by a BatchedDeleteMin operation include all elements with smallest priority
pmin, their priorities are smaller than the priorities of all elements that remain
in Q, and the priorities of any two retrieved elements differ by at most 1. Every
subsequent Update operation has to have priority at least pmin + 1.

4 The Shortest Path Algorithm

Similar to the BFS-algorithm of [9], our algorithm consists of two phases: The
clustering phase computes a partition of the vertex set of G into o(V) vertex
clusters V1, . . . , Vq and groups the adjacency lists of the vertices in these clusters
into cluster files F1, . . . ,Fq. During the shortest path phase, when a vertex v
is settled, we do not only retrieve its adjacency list but the whole cluster file
from disk and store it in a collection of hot pools H1, . . . ,Hr. Thus, whenever
another vertex in the same cluster as v is settled, it suffices to search the hot
pools for its adjacency list. Using this approach, we perform only one random
access per cluster instead of performing one random access per vertex to retrieve
adjacency lists. The efficiency of our algorithm depends on how efficiently the
edges incident to a settled vertex can be located in the hot pools and relaxed.

In Section 4.1, we show how to compute a well-structured cluster partition,
whose properties help to make the shortest path phase, described in Section 4.2,
efficient. In Section 4.3, we analyze the average-case complexity of our algorithm.

4.1 The Clustering Phase

In this section, we define a well-structured cluster partition P = (V1, . . . , Vq)
of G and show how to compute it I/O-efficiently. We assume w.l.o.g. that the
minimum edge weight in G is w = 1. We group the edges of G into r = �log2 W �
categories so that the edges in category i have weight between 2i−1 and 2i. The
category of a vertex is the minimum of the categories of its incident edges. Let
G0, . . . , Gr be a sequence of graphs defined as G0 = (V, ∅) and, for 1 ≤ i ≤ r,
Gi = (V, Ei) with Ei = {e ∈ E : e is in category j ≤ i}. We call the connected
components of Gi category-i components. The category of a cluster Vj is the
smallest integer i so that Vj is completely contained in a category-i component.
The diameter of Vj is the maximal distance in G between any two vertices in
Vj . For some µ ≥ 1 to be fixed later, we call P = (V1, . . . , Vq) well-structured if
(P1) q = O(V/µ), (P2) no vertex v in a category-i cluster Vj has an incident
category-k edge (v, u) with k < i and u 	∈ Vj , and (P3) no category-i cluster has
diameter greater than 2iµ.

440 U. Meyer and N. Zeh

The goal of the clustering phase is to compute a well-structured cluster
partition P = (V1, . . . , Vq) along with cluster trees T̃1, . . . , T̃q and cluster files
F1, . . . ,Fq; the cluster trees capture the containment of the vertices in clusters
V1, . . . , Vq in the connected components of graphs G0, . . . , Gr; the cluster files
are the concatenations of the adjacency lists of the vertices in the clusters.

Computing the cluster partition. We use a minimum spanning tree T
of G to construct a well-structured cluster partition of G. For 0 ≤ i ≤ r, let
Ti be the subgraph of T that contains all vertices of T and all tree edges in
categories 1, . . . , i. Then two vertices are in the same connected component of
Ti if and only if they are in the same connected component of Gi. Hence, a
well-structured cluster partition of T is also a well-structured cluster partition
of G. We show how to compute the former. For any set X ⊆ V , we define its
tree diameter as the total weight of the edges in the smallest subtree of T that
contains all vertices in X. We guarantee in fact that every category-i cluster in
the computed partition has tree diameter at most 2iµ. Since the tree diameter of
a cluster may be much larger than its diameter, we may generate more clusters
than necessary; but their number is still O(V/µ).

We iterate over graphs T0, . . . , Tr. In the i-th iteration, we partition the
connected components of Ti into clusters. To bound the number of clusters we
generate, we partition a component of Ti only if its tree diameter is at least
2iµ and it contains vertices that have not been added to any cluster in the first
i−1 iterations. We call these vertices active; a component is active if it contains
at least one active vertex; an active category-i component is heavy if its tree
diameter is at least 2iµ. To partition a heavy component C of Ti into clusters,
we traverse an Euler tour of C, forming clusters as we go. When we visit an active
category-(i − 1) component in C for the first time, we test whether adding this
component to the current cluster would increase its tree diameter beyond 2iµ.
If so, we start a new cluster consisting of the active vertices in this component;
otherwise, we add all active vertices in the component to the current cluster.

This computation takes O(sort(V + E) + (V/B) log2(W/w)) I/Os w.h.p.:
A minimum spanning tree T of G can be computed in O(sort(V + E)) I/Os
w.h.p. [4]. An Euler tour L of T can be computed in O(sort(V)) I/Os [4]. The
heavy components of a graph Ti can be identified and partitioned using two
scans of L and using three stacks to keep track of the necessary information
as we advance along L. Hence, one iteration of the clustering algorithm takes
O(V/B) I/Os; all r = log2 W iterations take O((V/B) log2 W) I/Os.

It remains to be argued that the computed partition is well-structured.
Clearly, every category-i cluster has diameter at most 2iµ. Such a cluster is
completely contained in a category-i component, and no category-(i − 1) com-
ponent has vertices in two different category-i clusters. Hence, all clusters have
Property (P2). In the full paper, we show that their number is O(V/µ).

Lemma 3. A well-structured cluster partition of a weighted graph G = (V, E)
can be computed in O(sort(V + E) + (V/B) log2(W/w)) I/Os w.h.p.

Computing the cluster trees. In order to decide in which hot pool to
store an edge (v, w) during the shortest path phase, we must be able to find

I/O-Efficient Undirected Shortest Paths 441

the smallest i so that the category-i component containing v includes a settled
vertex. Next we define cluster trees as the tool to determine category i efficiently.

The nesting of the components of graphs T0, . . . , Tr can be captured in a
tree T̃ . The nodes of T̃ represent the connected components of T0, . . . , Tr. A
node representing a category-i component C is the child of a node representing
a category-(i + 1) component C ′ if C ⊆ C ′. We ensure that every internal node
of T̃ has at least two children; that is, a subgraph C of T that is a component
of more than one graph Ti is represented only once in T̃ . We define the category
of such a component as the largest integer i so that C is a component of Ti.

Now we define the cluster tree T̃j for a category-i cluster Vj : Let C be the
category-i component containing Vj , and let v be the node in T̃ that represents C;
T̃j consists of the paths in T̃ from v to all the leaves that represent vertices in Vj .

Tree T̃ can be computed in r scans of Euler tour L, similar to the construc-
tion of the clusters; this takes O((V/B) log2 W) I/Os. Trees T̃1, . . . , Tq can be
computed in O(sort(V)) I/Os, using a DFS-traversal of T̃ . In the full paper, we
show that their total size is O(V).

Computing the cluster files. The last missing piece of information about
clusters V1, . . . , Vq is their cluster files F1, . . . ,Fq. File Fj is the concatenation of
the adjacency lists of the vertices in Vj . Clearly, files F1, . . . ,Fq can be computed
in O(sort(V + E)) I/Os, by sorting the edge set of G appropriately.

4.2 The Shortest Path Phase

At a very high level, the shortest path phase is similar to Dijkstra’s algorithm.
We use the integer priority queue from Section 3 to store all non-settled vertices;
their priorities equal their tentative distances from s. We proceed in iterations:
Each iteration starts with a BatchedDeleteMin operation, which retrieves
the vertices to be settled in this iteration. The priorities of the retrieved vertices
are recorded as their final distances from s, which is correct because all edges in
G have weight at least 1 and the priorities of the retrieved vertices differ by at
most 1. Finally, we relax the edges incident to the retrieved vertices.

We use the clusters built in the previous phase to avoid spending one I/O
per vertex on retrieving adjacency lists. When the first vertex in a cluster Vj

is settled, we load the whole cluster file Fj into a set of hot pools H1, . . . ,Hr.
When we subsequently settle a vertex v ∈ Vk, we scan the hot pools to see
whether they contain v’s adjacency list. If so, we relax the edges incident to
v; otherwise, we have to load file Fk first. Since we load every cluster file only
once, we spend only O(V/µ + E/B) I/Os on retrieving adjacency lists. Since
we scan the hot pools in each iteration, to decide which cluster files need to
be loaded, the challenge is to avoid touching an edge too often during these
scans. We solve this problem by using a hierarchy of hot pools H1, . . . ,Hr and
inspecting only a subset H1, . . . ,Hi of these pools in each iteration. We choose
the pool where to store every edge to be the highest pool that is scanned at
least once before this edge has to be relaxed. The precise choice of this pool
is based on the following two observations: (1) It suffices to relax a category-i

442 U. Meyer and N. Zeh

edge incident to a settled vertex v any time before the first vertex at distance at
least dist(s, v) + 2i−1 from s is settled. (2) An edge in a category-i component
cannot be up for relaxation before the first vertex in the component is about
to be settled. The first observation allows us to store all category-i edges in
pool Hi, as long as we guarantee that Hi is scanned at least once between the
settling of two vertices whose distances from s differ by at least 2i−1. The second
observation allows us to store even category-j edges, j < i, in pool Hi, as long
as we move these edges to lower pools as the time of their relaxation approaches.

The second observation is harder to exploit than the first one because it
requires some mechanism to identify for every vertex v, the smallest category
i so that the category-i component containing v contains a settled vertex or a
vertex to be settled soon. We provide such a mechanism using four additional
pools Vi, Ti, H′

i, and T ′
i per category. Pool Vi contains settled vertices whose

catergory-j edges, j < i, have been relaxed. Pools T1, . . . , Tr store the nodes of
the cluster trees corresponding to the cluster files loaded into pools H1, . . . ,Hr.
A cluster tree node is stored in pool Ti if its corresponding component C is in
category i or it is in category j < i and the smallest component containing C and
at least one settled vertex or vertex in B1, . . . ,Bi is in category i. We store an edge
(v, w) in pool Hi if its category is i or it is less than i and the cluster tree node
corresponding to vertex v resides in pool Ti. Pools H′

1, . . . ,H′
r and T ′

1 , . . . , T ′
r

are auxiliary pools that are used as temporary storage after loading new cluster
files and trees and before we determine the correct pools where to store their
contents. We maintain a labeling of the cluster tree nodes in pools T ′

1 , . . . , T ′
r that

helps us to identify the pool Ti where each node in these pools is to be stored:
A node is either marked or unmarked; a marked node in T ′

i corresponds to a
component that contains a settled vertex or a vertex in B1, . . . ,Bi. In addition,
every node stores the category of (the component corresponding to) its lowest
marked ancestor in the cluster tree.

To determine the proper subset of pools to be inspected in each iteration, we
tie the updates of the hot pools and the relaxation of edges to the updates of
priority queue buckets performed by the BatchedDeleteMin operation. Every
such operation can be divided into two phases: The up-phase incorporates the
updates in buckets U1, . . . ,Ui into buckets B1, . . . ,Bi; the down-phase distributes
the contents of bucket Bi over buckets B1, . . . ,Bi−1. We augment the up-phase
so that it loads cluster files and relaxes the edges in pools H1, . . . ,Hi that are
incident to settled vertices. In the down-phase, we shift edges from pool Hi to
pools H1, . . . ,Hi−1 as necessary. The details of these two phases are as follows:

The up-phase. We update the contents of the category-j pools and relax
the edges in Hj after applying the updates from Uj to Bj . We mark every node
in T ′

j whose corresponding component contains a vertex in Bj ∪ Vj and identify,
for every node, the category of its lowest marked ancestor in T ′

j . We move every
node whose lowest marked ancestor is in a category greater than j to T ′

j+1 and
insert the other nodes into Tj . For every leaf of a cluster tree that was moved to
T ′

j+1, we move the whole adjacency list of the corresponding vertex from H′
j to

H′
j+1. Any other edge in H′

j is moved to H′
j+1 if its category is greater than j;

I/O-Efficient Undirected Shortest Paths 443

otherwise, we insert it into Hj . We scan Vj and Hj to identify all category-j
vertices in Vj that do not have incident edges in Hj , load the corresponding
cluster files and trees into H′

j and T ′
j , respectively, and sort H′

j and T ′
j . We

proceed as above to decide where to move the nodes and edges in T ′
j and H′

j .
We scan Vj and Hj again, this time to relax all edges in Hj incident to vertices in
Vj . As we argue below, the resulting Update operations affect only Bj+1, . . . ,Br;
so we insert these updates into Uj+1. Finally, we move all vertices in Vj to Vj+1
and either proceed to Bj+1 or enter the down-phase with i = j, depending on
whether or not Bj is empty.

The down-phase. We move edges and cluster tree nodes from Hj and Tj to
Hj−1 and Tj−1 while moving vertices from bucket Bj to bucket Bj−1. First we
identify all nodes in Tj whose corresponding components contain vertices that
are pushed to Bj−1. If the category of such a node v is less than j, we push
the whole subtree rooted at v to Tj−1. For every leaf that is pushed to Tj−1, we
push all its incident edges of category less than j from Hj to Hj−1. Finally, we
remove all nodes of T̃ from Tj that have no descendent leaves left in Tj .

Correctness. We need to prove the following: (1) The relaxation of a cate-
gory-i edge can only affect buckets Bi+1, . . . ,Br. (2) Every category-i edge (v, w)
is relaxed before a vertex at distance at least dist(s, v) + 2i−1 from s is settled.

To see that the first claim is true, observe that a vertex v that is settled
between the last and the current relaxation of edges in Hi has distance at least
l−2i−2 from s, where [l, u) is the priority interval of bucket Bi, i.e., u ≤ l+2i−2.
Since an edge (v, w) ∈ Hi has weight at least 2i−1, we have dist(s, v)+ω(v, w) >
l + 2i−2 = u; hence, vertex w will be inserted into one of buckets Bi+1, . . . ,Br.

The second claim follows immediately if we can show that when vertex v
reaches pool Vi, edge (v, w) either is in Hi or is loaded into Hi. This is sufficient
because we have to empty at least one bucket Bj , j ≥ i, between the settling of
vertex v and the settling of a vertex at distance at least dist(s, v) + 2i−1. Since
edge (v, w) is in category i, the category of vertex v is h ≤ i. When v ∈ Vh, the
cluster file containing v’s adjacency list is loaded into pool H′

h, and all category-h
edges incident to v are moved to Hh, unless pool Hh already contains a category-
h edge incident to v. It is easy to verify that in the latter case, Hh must contain
all category-h edges incident to v. This proves the claim for i = h. For i > h,
we observe that the adjacency list of v is loaded at the latest when v ∈ Vh. If
this is the case, edge (v, w) is moved to pool Hi at the same time when vertex v
reaches pool Vi. If vertex v finds an incident category-h edge in Hh, then edge
(v, w) is either in one of pools H′

h+1, . . . ,H′
i or in one of pools Hi, . . . ,Hr. In

the former case, edge (v, w) is placed into pool Hi when vertex v reaches pool
Vi. In the latter case, edge (v, w) is in fact in pool Hi because, otherwise, pool
Hh could not contain any edge incident to v. This proves the claim for i > h.

I/O-complexity. The analysis is based on the following two claims proved
below: (1) Every cluster file is loaded exactly once. (2) Every edge is involved in
O(µ) updates of a pool Hi before it moves to a pool of lower category; the same
is true for the cluster tree nodes in Ti. In the full paper, we show that all the
updates of the hot pools can be performed using a constant number of scans. Also

444 U. Meyer and N. Zeh

note that every vertex is involved in the sorting of pool V1 only once, and every
edge or cluster tree node is involved in the sorting of a pool H′

i or T ′
j only once.

These observations together establish that our algorithm spends O(V/µ + (V +
E)/B) I/Os on loading cluster files and cluster trees; O(sort(V + E)) I/Os on
sorting pools V1, H′

1, . . . ,H′
r, and T ′

1 , . . . , T ′
r ; and O((µE/B) log2 W) I/Os on all

remaining updates of priority queue buckets and hot pools. Hence, the total I/O-
complexity of the shortest path phase is O(V/µ+(µE/B) log2 W +sort(V +E)).

To show that every cluster file is loaded exactly once, we have to prove that
once a cluster file containing the adjacency list of a category-i vertex v has
been loaded, vertex v finds an incident category-i edge (v, w) in Hi. The only
circumstance possibly preventing this is if (v, w) ∈ Hj , j > i, at the time when
v ∈ Vi. However, at the time when edge (v, w) was moved to Hj , no vertex in
the category-(j − 1) component C that contains v had been settled or was in
one of B1, . . . ,Bj−1. Every vertex in C that is subsequently inserted into the
priority queue is inserted into a bucket Bh+1, h ≥ j, because this happens as the
result of the relaxation of a category-h edge. Hence, before any vertex in C can
be settled, such a vertex has to be moved from Bj to Bj−1, which causes edge
(v, w) to move to Hj−1. This proves that vertex v finds edge (v, w) in Hi.

To prove that every edge is involved in at most O(µ) scans of pool Hi, observe
that at the time when an edge (v, w) is moved to pool Hi, there has to be a vertex
x in the same category-i component C as v that either has been settled already
or is contained in one of buckets B1, . . . ,Bi and hence will be settled before pool
Hi is scanned for the next time; moreover, there has to be such a vertex whose
distance from v is at most 2iµ. By Lemma 2, the algorithm makes progress at
least 2j−2/3 every time pool Hi is scanned. Hence, after O(µ) scans, vertex v is
settled, so that edge (v, w) is relaxed before or during the next scan of pool Hi.
This proves the second claim.

Summing the I/O-complexities of the two phases, we obtain that the I/O-
complexity of our algorithm is O(V/µ + (µ(V + E)/B) log2 W + sort(V + E))
w.h.p. By choosing µ =

√
V B/(E log2 W), we obtain the following result.

Theorem 1. The single source shortest path problem on an undirected graph
G = (V, E) can be solved in O(

√
(V E/B) log2(W/w)+sort(V +E)) I/Os w.h.p.,

where w and W are the minimal and maximal edge weights in G.

Observe that the only place in the algorithm where randomization is used
is in the computation of the minimum spanning tree. In [3], it is shown that a
minimum spanning tree can be computed in O(sort(V +E) log log(V B/E)) I/Os
deterministically. Hence, we can obtain a deterministic version of our algorithm
that takes O(

√
(V E/B) log2(W/w) + sort(V + E) log log(V B/E)) I/Os.

4.3 An Average-Case Analysis

Next we analyze the average-case complexity of our algorithm. We assume uni-
form random edge weights in (0, 1], but make no randomness assumption about
the structure of the graph. In the full paper, we show that we can deal with “short

I/O-Efficient Undirected Shortest Paths 445

edges”, that is, edges whose weight is at most 1/B, in expected O(sort(E))
I/Os, because their expected number is E/B. We deal with long edges us-
ing the algorithm described in this section. Now we observe that the expected
number of category-i edges in G and category-i nodes in T̃ is O(2i−1E/B).
Each such edge or node moves up through the hierarchy of pools H′

1, . . . ,H′
r

or T ′
1 , . . . , T ′

r , being touched O(1) times per category. Then it moves down
through pools Hr, Hr−1, . . . ,Hi or Tr, Tr−1, . . . , Ti, being touched O(µ) times
per category. Hence, the total cost of scanning pools H′

1, . . . ,H′
r and T ′

1 , . . . , T ′
r

is O(E log2 B/B), and the expected total cost of scanning pools H1, . . . ,Hr and
T1, . . . , Tr is O((µE/B2)

∑r
i=1 2i−1(r − i + 1)) = O(µE/B). Thus, the expected

I/O-complexity of our algorithm is O(V/µ + µE/B + ((V + E)/B) log2 B +
sort(V + E)). By choosing µ =

√
V B/E, we obtain the following result.

Theorem 2. The single source shortest path problem on an undirected graph
G = (V, E) whose edge weights are drawn uniformly at random from (0, 1] can
be solved in expected O(

√
V E/B + ((V + E)/B) log2 B + sort(V + E)) I/Os.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Comm. of the ACM, pp. 1116–1127, 1988.

2. R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan. Faster algorithms for
the shortest path problem. Journal of the ACM, 37(2):213–233, 1990.

3. L. Arge, G. S. Brodal, and L. Toma. On external memory MST, SSSP, and multi-
way planar separators. Proc. 7th SWAT, LNCS 1851, pp. 433–447. Springer, 2000.

4. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S.
Vitter. External-memory graph algorithms. Proc. 6th ACM-SIAM SODA, pp.
139–149, 1995.

5. A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders. A parallelization of Dijkstra’s
shortest path algorithm. Proc. 23rd MFCS, LNCS 1450, pp. 722–731. Springer,
1998.

6. E. W. Dijkstra. A note on two problems in connection with graphs. Numerical
Mathematics, 1:269–271, 1959.

7. M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34:596–615, 1987.

8. V. Kumar and E. J. Schwabe. Improved algorithms and data structures for solving
graph problems in external memory. Proc. 8th IEEE SPDP, pp. 169–176, 1996.

9. K. Mehlhorn and U. Meyer. External-memory breadth-first search with sublinear
I/O. Proc. 10th ESA, LNCS 2461, pp. 723–73. Springer, 2002.

10. U. Meyer, P. Sanders, and J. F. Sibeyn, editors. Algorithms for Memory Hierar-
chies, LNCS 2625. Springer, 2003.

11. R. Raman. Recent results on the single-source shortest paths problem. ACM
SIGACT News, 28(2):81–87, June 1997.

12. M. Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. Journal of the ACM, 46:362–394, 1999.

13. J. S. Vitter. External memory algorithms and data structures: Dealing with mas-
sive data. ACM Computing Surveys, 33(2):209–271, 2001.

14. N. Zeh. I/O-Efficient Algorithms for Shortest Path Related Problems. PhD thesis,
School of Computer Science, Carleton University, 2002.

	Introduction
	Preliminaries and Outline
	An Efficient Batched Integer Priority Queue
	The Shortest Path Algorithm
	The Clustering Phase
	The Shortest Path Phase
	An Average-Case Analysis

