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ABSTRACT
Computing the strong components of a directed graph is an
essential operation for a basic structural analysis of it. This
problem can be solved by twice running a depth-first search
(DFS). In an external setting, in which all data can no longer
be stored in the main memory, the DFS problem is unsolved
so far. Assuming that node-related data can be stored inter-
nally, semi-external computing does not make the problem
substantially easier. Considering the definite need to ana-
lyze very large graphs, we have developed a set of heuristics
which together allow the performance of semi-external DFS
for directed graphs in practice. The heuristics have been ap-
plied to graphs with very different graph properties, includ-
ing “web graphs” as described in the most recent literature
and some large call graphs from ATT. Depending on the
graph structure, the program is between 10 and 200 times
faster than the best alternative, a factor that will further
increase with future technological developments.

Keywords: Depth First Search, External Memory, Graph
Algorithms, Strong Components.

Categories & Subject Descriptors: G.2.2.

General Terms: Algorithms.

1. INTRODUCTION
Depth-first search, DFS, is a basic and crucial operation

on graphs. On undirected graphs it can be used for comput-
ing the biconnected components. On directed graphs DFS
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is the key routine to computing strongly connected com-
ponents. DFS can also be used for determining whether
a graph is acyclical, and, if yes, computing a topological
sorting. For graphs with n nodes and m edges, sequen-
tial DFS can be performed in O(n + m) time. This al-
gorithm accesses the n adjacency lists of the nodes in an
a priori unpredictable order which implies that it exploits
random memory access in an essential way. In an external
setting, where the data do not fit in the main memory, it
performs extremely badly. Surprisingly, there are no sub-
stantially better external-memory algorithms which means
that in practice the above mentioned problems cannot be
solved for graphs such as the web graph or the call graphs
(in which the nodes represent customers and every directed
edge represents a telephone call) of telephone companies.

In this paper we assume that the internal memory can
hold c · n data, for some small constant c, but that m is
too large. This is called semi-external computing. Even in
this setting, theory does not provide any practical solution
for the DFS problem. Though nothing has been proven, it
appears that the problem has an intrinsic hardness similar
to NP-hardness in the sequential and P-completeness in the
parallel domain. It is a common and accepted practice to try
to tackle such problems either by approximation algorithms
or by heuristics. For DFS an approximation does not appear
to make much sense: apparently, an almost correct DFS
forest, does not necessarily lead to almost correct strong
components. But, heuristics may be useful as we will show.

1.1 Computer Model
For our algorithm the details of the computer model are

not important. The only relevant system feature is the dis-
tinction between random and batched memory access. The
cost t(b) for reading b consecutive integers from a specific
location in the secondary memory can namely be approxi-
mated quite accurately by

t(b) = tseek + b · ttransfer. (1)

The same expression, with possibly a slightly different value
for ttransfer, can be used to estimate the time for writing. In
current practice, for obtaining coarse estimates, it is conve-
nient to work with tseek = 10−2 and ttransfer = 10−6.

(1) implies that, in comparison to the speed of the proces-
sor, it is extremely inefficient to randomly access secondary
memory, processing only 1/tseek � 100 objects per second.
However, if objects are accessed in batches of a size B that
is so large that B · ttransfer >> tseek, we can process up to
1/ttransfer � 1,000,000 objects per second (if the objects are
small), which is not so much worse than the speed at which
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the main memory can supply the processor with data that
do not reside in the cache.

The notion of an IO operation, used to describe the achieve-
ments of more theoretical papers, corresponds to one access
to a random location of the secondary memory plus reading
a block of data. Our results can easily be expressed in terms
of such IO operations, but it is pointless to do so: if one en-
sures that an algorithm only accesses memory in a batched
way, then it suffices and saves a parameter, to specify the
total amount of data read and written.

1.2 Previous Work
All previous external DFS algorithms for general graphs

follow the basic idea of the sequential approach: a stack is
maintained; the top element is repeatedly popped; if it was
not visited before, then all the nodes in its adjacency list are
pushed on the stack. In an external setting it is not obvious
how to maintain the information about the status (visited
or not) of the nodes so that one does not need m accesses
to the secondary memory. This problem has been solved by
Chiang et al. [8] and Kumar and Schwabe [14]. However,
their algorithms still use more than n IOs. There exists a
polylog-time parallel algorithm for unordered1 DFS [1] but
it is not suited for conversion into an external memory algo-
rithm along the lines of [8] because it is not work-optimal.

Even though n IOs are better than m IOs, it is still far
too much to be practical (on current systems one hard disk
access takes about 10 ms). In a semi-external setting, main-
taining the status information is not an issue: the array of
n bits can be maintained internally. However, fundamen-
tally this does not change anything: accessing the n adja-
cency lists in the unpredictable order in which the nodes are
popped from the stack still requires close to n IOs.

Only for special cases there are better results. For outer-
planar graphs and graphs with bounded tree width, Mah-
eswari and Zeh [15, 16] have given much faster algorithms,
which have an IO complexity of the same order as sorting.
In [18] it is shown how external graph algorithms can take
advantage of a redundant graph representation and super-
linear space. This facilitated the first DFS algorithm per-
forming o(n) IOs on undirected planar graphs with arbitrary
node degrees. Arge et. al. have further improved this result,
showing that for planar graphs external DFS can be solved
with O(sort(n · log n)) IOs. For the planar case Maheswari
and Zeh [17] have reduced the IO complexity O(sort(n)).

1.3 New Contributions
Heuristics for the semi-external DFS problem are pre-

sented, which have been turned into an efficient, intensively
tested and user-friendly C program. The program requires
only three integers of internal memory per node. Due to the
structured way in which the external memory is accessed,
the IO time constitutes a non-dominating fraction (10 to
20%) of the overall running time. In addition to the compu-
tation the program performs preprocessing, evaluation and
testing. It also provides routines for generating directed and
undirected graphs of 9 classes with very different graph prop-
erties: random graphs, one- and two-dimensional geometric
graphs, web graphs, star graphs and acyclic graphs.

1Unordered DFS means that the edges of a node may be
processed in any order, whereas ordered DFS computes one
particular tree according to the order of the edges within
the adjacency lists.

Graph First DFS Second DFS
r Ttot TIO r Ttot TIO

Rand 0.69 1465 157 0.63 2141 199
Cycle 10.87 17953 1687 2.28 4046 333
Geom-1d 4.04 4737 420 6.75 7308 653
Geom-2d 0.71 1481 159 0.66 2079 194
CF-Web 4.48 5017 573 2.15 2400 292
Simple-Web 2.59 4127 385 4.13 6198 558
Out-Star 8.11 7564 931 2.00 2488 285
In-Out-Star 14.03 10579 1339 9.62 9149 1045
Acyc 8.56 9580 864 2.00 2366 212

Table 1: Experimental results for graphs with n =
2·107 and m = 2·108. Graph parameters: for Geom-1d,
α = 0.9; for Geom-2d, α = 0.8; for CF-Web and Simple-

Web, there are 5% edges to existing nodes; for Out-

Star and In-Out-Star, the star degree is 1000. The
first DFS computes a DFS tree, the second DFS
computes the strong components. The times are
given in seconds; Ttot denotes the total running time
(including IO), TIO gives the time spent on reading
and writing.

The running time is the most important in practice, but
we do not use this as our main performance measure because
it depends too much on the system. Instead, in the design
of our algorithm we focus on minimizing the ratio r of the
total number of edges that and processed in the internal
DFS operations divided by m. The ratio r depends on the
algorithm and on the graph but not on the system, while it
nevertheless provides a good measure for the running time.

Turning to concrete results, we provide in Table 1 an
overview of measurements performed on the generated graphs
described in Section 4. The experiments were run on a Sun
UltraSparc II, with a 400 MHz clock frequence, 512 MB of
main memory and a 7200 rpm hard disk. Extrapolating ex-
periments with internal DFS shows that if sufficient memory
would be available these problems can be solved in about 500
seconds. Comparing with this, the loss factor for our pro-
gram ranges from 3 for random and 2-d geometric graphs
to 36 for cycle graphs. For higher values of g = m/n these
factors tend to decrease because r mostly decreases with g.
The time for conventional external algorithms is dominated
by the almost n page faults they cause. For n = 2·107, these
take about 200,000 seconds. In comparison our algorithm is
between 11 and 140 times faster. For sparser graphs these
factors increase. The second DFS computation appears to
give smaller maximum r values.

In Section 5 we report on experiments on call graphs from
ATT. The largest tested graph has n = 9,921,001 and m =
268,419,306. This graph is of intermediate hardness: r =
5.86 for the first DFS and r = 3.42 for the second.

In general one can say that the DFS problem is easy for
graphs for which the DFS forest mainly consists of a single
very long path with an occasional branch of size one or two.
It is much harder for graphs whose DFS forest consist of
large and very shallow trees. Such forests arise for acyclic
graphs in which each node chooses its edges uniformly from
among all nodes with a smaller index. For such graphs one
may find values of r around 10 for very large problem in-
stances: the heuristics have become quite sophisticated, but
can certainly be improved further. We hope that this paper
is the beginning of a fruitful development similar to what
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we have seen for exact algorithms for the minimum Steiner
tree problem, for which ever better heuristics were able to
solve the problem for ever larger graphs [11, 13, 19].

If we consider the development of the time for a float-
ing point operation tint and that of the hard disk access
parameters, ttransfer and tseek, then we see that for many
years, tint has been decreasing most rapidly and tseek most
slowly. tseek depends on the rotational speed of the hard
disk, which is not easy to increase. tint depends on the
clock speed, which has been doubling every 18 months for
the past decades. If this development continues, then the
relative advantage of algorithms like ours, which perform
many internal operations and very few accesses to the ex-
ternal memory, increases. Right now our algorithm is about
100 times faster than the conventional algorithm. In the
coming three years this factor will probably double, just as
it has doubled since three years ago.

A completely different approach was chosen by Broder et
all. [6] in their study of the strong components of the web-
graph. They do not apply any (semi-) external techniques,
but use a computer with a huge internal memory in com-
bination with data compression. In comparison with our
methods, their approach has the advantage of being much
faster. But, even the most clever data compression cannot
make a graph arbitrarily small, and not everyone can afford
a computer with multi-gigabyte internal memory. Therefore
we believe that semi-external methods are important as one
of several possible approaches to tackling problems that are
on the edge of being intractable.

1.4 Basics
The nodes are indexed from 0 up to n − 1. It is assumed

that the graph initially resides on file as m pairs of node
indices giving the edges. Finally, the output is written away
to file as a set of n node pairs, defining the DFS forest. For
each tree root u an edge (n, u) is written. Figure 1 illustrates
these conventions.

Output: 8 0 0 7 7 4 4 3 7 5 8 1 8 2 2 6Input: 3 0 1 4 6 7 0 7 5 0 6 5 7 4 6 1 2 6 7 5 0 3

2

67

4

8

5

3

0 1

3 4 1

67

5 2

0

Figure 1: Example of an input for a graph with n = 8
and m = 11; the corresponding graph; a possible DFS
tree; and the corresponding output.

The first node in the adjacency list of a node u is called
the leftmost child of u. More generally, we will sometimes
refer to the children as if the tree were drawn so that the
children appear from left to right in the order in which they
appear in the adjacency list of their parent. We distinguish
the types of edges illustrated in Figure 2.

self loop

tree edge
backward

backward
cross edge

forward
cross edge

forward
tree edge

Figure 2: The five types of edges distinguished.

For comparison purposes we present a non-recursive ver-
sion of the basic internal DFS algorithm.

Proc Conventional DFS(int n) {
for (u = 0; u < n; u++)

free[u] = 1;
for (u = 0; u < n; u++) {

head = 0;
stack[head] = u;
while (head ≥ 0) {

v = stack[head];
head−−;
if (free[v]) {

free[v] = 0;
for (each neighbor w of v) {

head++;
stack[head] = w; } } } } }

If this algorithm is run in an external setting, then it must
access the hard disk for getting free[v] for each node v popped
from the stack, giving a total of close to m accesses. If this
algorithm is run in a semi-external setting, then it must ac-
cess the hard disk for getting the adjacency list for each free
node v, giving a total of close to n accesses. Even in this
latter case (and no algorithm from the literature performs
better), the time is horrible: just for the hard disk accesses,
it takes n·tseek � n/100 seconds. Only for very dense graphs
does this algorithm become competitive.

2. ALGORITHM
A tree is a DFS tree of a graph if and only if there are no

forward cross edges among the non-tree edges of the graph.
This observation inspires the idea to maintain a tentative
forest which is modified so as to reduce the number of cross
edges. However, this idea does not easily lead to a good
algorithm: algorithms of this kind may continue to consider
all edges without making (much) progress. In our algorithm
these problems are overcome to a large extent by:

• initially constructing a forest with a close to minimal
number of trees (which is not easy for directed graphs);

• only replacing an edge in the tentative forest if neces-
sary;

• rearranging the branches of the tentative forest, so that
it grows deep faster (as a consequence, from among
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the many correct DFS forests, our algorithm finds a
relatively deep one);

• after considering all edges once, determining as many
nodes as possible that have reached their final position
in the forest and reducing the set of graph and tree
edges accordingly.

2.1 Basic Approaches
Edge-by-Edge Approach. There are two possible basic
approaches towards algorithms of the type we are consider-
ing. The first appears to be most promising:

Proc Edge By Edge Processing(int n, int m) {
while any change during last m edges do {

let (u, v) be the next edge in cyclical order;
if (u, v) is a forward cross edge {

let w be the parent of v;
cut the link (w, v) and add the link (u, v); } } }

Proc Semi External DFS(int n, int m) {
initialize an empty tree data structure;
for (u = 0; u < n; u++)

add a link (n, u) to the tree;
Edge By Edge(n, m); }

Here we assumed that the n nodes are indexed from 0
up to n − 1, to which we have added the artificial node n.
Initially all nodes are connected to node n, which makes all
subsequent operations slightly easier. These links from n
will gradually disappear, and finally the children of n are
the roots of the trees of the DFS forest. Henceforth we will
speak of tree instead of forest, meaning the tree rooted at
node n. The correctness of this algorithm is obvious, because
a tree is a DFS tree if and only if there are no cross edges.
What is unclear is how many edges have to be tested. In
the basic form the algorithm is given, this number is far too
high, but with the rearrangement idea presented in the next
section it becomes acceptable (which means that in practice
one has to traverse all edges only a few times).

In an earlier stage we developed an algorithm along these
lines for undirected graphs. In that case one should not cut
the link (w, v), but a link just below the lowest-common
ancestor, LCA, of u and v. In that case it is crucial to cut
in the branch leading to the least deep of the nodes u and v.

So, basically this approach is acceptable, but not practi-
cal. The problem is that for every individual edge we must
test whether it is a cross edge (and for the undirected graphs
we must even be able to determine LCAs). In a static struc-
ture, this can be done in constant time, after computing
pre- and post-order numbers of the tree. However, we are
performing updates to our structure all the time. Therefore
we must maintain some more sophisticated data structures,
such as dynamic trees [20, 21]. These offer all we want at
O(log n) amortized time per operation (including the relink-
ings). In itself this is already more than desirable, but, prac-
tically speaking, it is even worse that these data structures
require a substantial amount of internal memory. In our pre-
vious implementation we needed 21 integers per node, and
it appears that one cannot reduce this by much. Consider-
ing our applications (at all times we have the web graph in
mind for which m/n � 12), assuming that 21 · n integers
fit into the main memory, often amounts to assuming that
n + m integers fit into the main memory, and in that case

one can run a slightly modified variant of the conventional
DFS algorithm.2

Batched Approach. As an alternative for edge-by-edge
processing, the edges can be processed in a batched way as
follows:

Proc Batched Processing(int n, int m) {
while any change during last m edges do {

load the next batch of n edges into the main memory;
add these edges to the adjacency lists of the tree;
search a new DFS tree in the current set of 2 · n edges;
update the adjacency structure; } }

One clear advantage of this approach is that the amortized
time per processed edge is constant. Another advantage is
that we need no complicated data structures and that all
internal data can be fit in 5 ·n integers of which at most 3 ·n
are accessed in an unstructured way at the same time (this
requires very careful memory management).

However, it is not obvious that with this approach the
number of processed edges does not become too large. In
addition to the rearrangement presented hereafter, the most
important idea is to give preference to the existing tree edges
when searching for a new DFS tree. This is easily achieved
by inserting the newly loaded edges at the end of the ad-
jacency lists of the nodes (assuming that when pushing the
children of a node on the stack, this is done in reversed order,
so that the first child comes at the top of the stack).

Clearly the algorithm becomes better when loading larger
batches of edges: this amortizes the fixed cost of handling
the n tree edges over more recently loaded edges; and with
larger batch size it becomes more likely that the algorithm
rapidly finds deep paths. However, for a graph with n nodes
and m′ edges, the internal DFS subroutine requires random
access to n + m′ integers. In our case m′ = n + b where b is
the number of edges in a batch. Taking b = n appears to be
a reasonable compromise (particularly also because we need
3 · n integers of randomly accessible memory even at other
places in the program).

The operation of loading n edges and processing them
in an internal DFS operation is called a phase. Processing
all m edges once will be called a round. Actually the al-
gorithm is composed of discrete rounds, each consisting of

m/n� phases, at the end of which the algorithm performs
the reduction operations described in Section 2.3 and tests
for termination, before starting the next round.

2.2 Rearrangement
The presented basic algorithms will ultimately terminate

(because some progress is made every round), but this may
take a very long time. The problem is that the algorithm
does not work in a particularly goal oriented way. The idea
is to restructure the tree in order to help the algorithm to
more rapidly find a DFS tree. More concretely, for every
node we sort its adjacency list on some weight attributed to
its children. In our case every node has as weight the size of
its subtree. Sorting the adjacency lists in decreasing order

2When running the conventional DFS algorithm, it is essen-
tial that the whole graph, which can be represented with
n + m integers, plus one bit per node can be maintained
in the main memory. The stack, however, which has a size
of up to 2 · m integers, can very well be maintained on the
hard disk, because the algorithm accesses it in a structured
fashion.
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with respect to this weight function moves nodes at the root
of large subtrees to the left.

Of course, a rearrangement of this kind introduces new
cross edges, but this is not serious: finally these cross edges
might have shown up anyway, and it is better to encounter
them as early as possible.

This rearrangement is rather stable in itself. If we have
two children v1 and v2 of a node u, v1 coming left of v2, which
are roots to subtrees of sizes s1 and s2, respectively, then
even if s1 = s2, the subtree of v1 tends to grow faster than
the subtree of v2, because we expect that the tree of v1 has
more outgoing cross edges than the tree of v2 (the difference
being the cross edges running between these two subtrees
themselves). So, the rearrangement really anticipates the
natural development of the tree, and it is unlikely that a
rearrangement is undone later on. The rearrangement itself
is therefore not a major source of continuing updates.

We only have to be careful not to destroy the structure
in parts of the tree which we already had concluded would
not change anymore. In Section 2.3 we define the notion
of “passive” nodes, and edges leading to them are removed
from the set of processed edges. In order to assure in an
easy way that passive nodes do not become active again, we
only rearrange the children of active nodes.

2.3 Reduction
Effective strategies for either reducing the set of active

nodes or edges is often the key to efficient graph algorithms.
In our case it is hard to find strategies that are guaranteed
to work, but there are several strategies that together work
quite well for most graphs.

An example of a trivial reduction strategy is based on
the observation that the nodes on the leftmost path are not
going to change place anymore (provided we do not rear-
range them): they are no longer active, but passive. All
edges leading towards passive nodes can be deleted: a pas-
sive node does not change its place in the tree anymore, so
any ingoing edge must be irrelevant. Outgoing edges are
still relevant if they are forward cross edges. For the other
types of edges it is easy to check that they will never become
forward cross edges anymore.

For the passive nodes we will maintain as an invariant
that a node u can only be declared passive if all the nodes
on the path from root[u] to u are passive. This fact will be
exploited in the proof that the reduction strategies in the
following are correct. Recall that all tree roots are in fact
children of the artificial node n. Node n is passive right from
the beginning. It is essential that the rearrangement does
not rearrange the children of passive nodes.

The reduction has several advantages: the reduction of
the number of active nodes reduces the size of the tree that
must be maintained internally and thereby leaves more space
for loading new edges, always filling up until we have 2 · n
edges. This makes the search more effective because a larger
fraction of the edges is processed at the same time. It also
gives rise to a better ratio between overhead (= processing
the old nodes) and useful work. Reducing the number of
edges is useful because this reduces the amount of work per
round, and because more useful information is present in the
main memory at the same time.

Unchanged Initial Part. Many DFS trees quickly have
a quite large stable first part. The involved nodes may be
declared passive. This idea is implemented by comparing

the current DFS tree (given as a list of edges in DFS order)
with the DFS tree at the end of the previous round.

Lemma 1. It is correct to declare all nodes occurring in
the unchanged initial edges of the DFS tree as passive.

Proof: Denote the nodes by u0, . . . , uk, for some k ≥ 0.
These nodes have and had the lowest preorder numbers of all
nodes in the tree. There cannot be any forward cross edges
from the nodes u0, . . . , uk−1. For a contradiction, assume
that there is a cross edge (ui, v). This would already have
been a cross edge during the past round, and it would have
caused a change of the tree after the edge leading to ui.
Cross edges outgoing from uk are irrelevant for anything
before uk.

Unchanged Final Part. It is tempting to perform a
similar reduction for an unchanged last part of the tree.
However, this is not always correct: if one node on the path
to a deeper lying unchanged last part has been moved into
another tree, then all edges that formerly were forward tree
edges have become cross edges. However, if a complete tree
at the end of the DFS forest is unchanged, then it will never
change again and its nodes can be made passive: apparently
there are no cross edges leading to this tree, otherwise at
least some nodes would have moved out. A generalization
of this is

Lemma 2. It is correct to declare a node u occurring in
the unchanged final edges of the DFS tree as passive if the
parent of u is passive.

Proof: Because node n is passive, all nodes belonging to
entire trees appearing in the unchanged final part will be-
come passive. We already concluded that this is correct.
The only interesting case is a node u that lies in a tree that
is only partially unchanged. Inductively we may assume
that it was correct to declare the nodes on the path to u
passive. So, these will not move to a position where any
node from them to u would become a cross edge. If there
were any other node with smaller preorder number with an
edge to u, then it would already have caused a change dur-
ing the past round. Edges to u from the nodes with higher
preorder numbers are not dangerous, because currently they
are backward cross edges, and these nodes will not change
their positions anymore.

No Passing Edges. The above strategies have problems
if the DFS forest consists of many trees. In the middle many
nodes may have reached their final positions and we cannot
detect this. Scanning through all edges once, we can discover
much more than by only looking at the changes in the DFS
trees. For example, assume that u is the root of a tree, and
that there is no edge from a tree to the left of it to any node
within the tree of u (including u itself) or to a tree to the
right of u. In that case u is passive: no edge that currently
has preorder number larger than u will ever get a preorder
number that is smaller than u, and thus will there never be
a cross edge leading to u. This idea is generalized in the
following algorithm for determining passive nodes:

Algorithm Find Passives

1. For every node u compute the preorder number preorder[u].

286



2. Traverse all edges and determine for every node u
the maximum reached[u] over all preorder numbers of the
nodes to which there is an edge from u.

3. For every node u compute the preorder maximum
max reached[u] = maxv∈Su{reached[v]}, where Su denotes
the set of nodes v with preorder[v] ≤ preorder[u].

4. For every node u set is ok[u] = max reached[v] <
preorder[u], where v is the node with preorder[v] = preorder[u]−
1.

5. Process the nodes in BFS order (for example), and de-
clare a node u passive if its parent is passive and is ok[u].

Notice that it is not correct to make every node u with
is ok[u] passive: there might be a link to a node v on the
path to u, in that case u moves along with v.

Lemma 3. Find Passives is correct.

Proof: The argument is similar to that in the proof of
Lemma 2. Inductively we assume that it was correct to
make the nodes on the path to u passive. is ok[u] means
that there is no edge from any node with smaller preorder
number to any node with preorder number equal to or larger
than that of u. So, none of the nodes after u will ever come
to stand before it. The fact that nodes that come before u
move, is irrelevant for the position of u as long as this does
not concern the nodes on the path to u.

Aggressive vs. Gentle Reduction. The performed re-
ductions never exclude nodes and edges that may still be
required for finding a correct DFS tree. This is what we call
gentle reduction. It is imaginable that it might be more
efficient to perform more aggressive reductions, in which
all nodes and edges are excluded that probably will not be
needed anymore. Of course, then we must test at the end
whether there are still cross edges left and possibly start a
new phase of reductions until no cross edges are left. Thus,
the correctness is not an issue. We tried this idea but did
not find any strategy that performs better than with the
three reductions described above, the reason being that for
just a few cross edges all edges must be processed again.

2.4 Minimizing Initial Number of Trees
Worst-Case Example. Consider a graph with n nodes
positioned on a cycle, with 2 ·n edges connecting each node
to both its direct neighbors. For this graph we start with
an initial forest with two trees, the left-most with node 0 as
root and node 1 as only child, and the other tree with node
n − 1 as root and all other nodes with decreasing indices
as a chain under it. If we run our algorithm on this, then
in every round only a few nodes (the expected number is
two) will be transferred from the right tree to the left tree,
and the expected number of rounds is Ω(n). Still, this very
example is no problem because we start by processing at
least 2 · n edges in a single DFS operation (see Section 2.5),
but for similar graphs with more edges, for example the
graphs of the built-in class cycle (see Section 4.1), that
basically connect the nodes to a bidirectional cycle we found
that the algorithm really requires Θ(n) rounds.

The problem we encounter here is that several trees that
finally will belong to the same tree initially are arranged in
reverse order. This problem appears to be limited to graphs

which have large subgraphs that resemble bidirectional cy-
cles, and indeed, as far as we know, these are the only classes
of graphs which are not treated well with the algorithm de-
scribed.

Partially Overcoming the Problem. For the bad ex-
ample above, the problem lies in the existence of several
wrongly oriented trees. If we succeed in linking these trees
together before we start the algorithm, then there is no prob-
lem. For undirected graphs, this would amount to first find-
ing a spanning tree. The analogue for directed graphs is
to try to find a forest with as few trees (and thus as many
edges) as possible. We do not know how to solve this prob-
lem efficiently, therefore we just try to fuse as many trees
together as possible (a greedy approach).

Let root(u) denote the root of the tree to which node u
belongs. A first correct idea is that when there is an edge
(u, v) with root(u) = root(v) and v = root(v), that then v
may be linked below u, reducing the number of trees by one.

A slightly farther reaching idea is that when there is an
edge (u, v) with root(u) = root(v) and v being a node from
which there is a path to root(v) entirely running through
nodes of the tree to which v belongs, then v may be linked
to u. The edges on the path to root(v) should be added and
all edges on the path from root(v) should be removed.

The problem with the latter idea is that it is not easy to
determine whether there is such a path to the root semi-
externally. Therefore, we perform a heuristic that tries to
find most of the nodes from which the tree root may be
reached:

Algorithm Determine Targets

1. For all nodes u, compute root[u], giving the root of
the tree to which u belongs.

2. For all nodes u, compute dpth[u], giving the depth of
node u.

3. Traverse all edges and determine for every node u the
node rchd[u] in the same tree which has minimum depth.

4. Construct a new graph G′ with one ingoing edge (rchd[u], u)
for every node u. G′ constitutes a forest with downward
edges. The roots of the original tree are among the roots
of G′.

5. For all roots of the original tree, perform a search in
G′, marking all reached nodes as targets. For every target,
the node from which it is reached is saved, this is a link
on the path to the root in the real graph.

The thus discovered targets are called primary targets. At
the cost of one pass through all edges, one may try to find
secondary targets: any node which was an edge to a target
in the same tree is a target itself. In the current implemen-
tation of the program, Determine Targets is complemented
with one pass to find secondary targets.

The complete heuristic for minimizing the number of trees
now repeats the following loop at least once, and as long as
this gives a reduction:

Algorithm Minimize Tree Number

1. Determine Targets.

2. Traverse all edges, and when finding an edge (u, v)
leading to a target v with root(u) = root(v), link v to
u and update the edges in the tree of root(v). Set the
boolean marking that any node in this tree is a target to
false.
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Because this operation is quite expensive, it should be per-
formed only when necessary. Therefore we first test whether
there are at least two trees of considerable size.

2.5 Optimizations
Many smaller tricks together helped to gain about a factor

two in the running time. We mention the most important
of these.

Before we have allocated any data structures, we have
some additional space in memory, which we can use for
searching through a slightly larger set of edges first. In the
current program we assume that there is internal memory for
at least 4·n integers, and this allows us to search through 3·n
edges with the implemented memory saving variant of the
internal-memory DFS algorithm. How much one saves with
this combined processing depends on the graph for which it
is performed. For random graphs we estimate that process-
ing x·n edges at once is about equally effective as performing
3/2 · x phases. For relatively sparse random graphs, this is
a noticeable improvement.

The rearrange operations take about 25% of the total
time. It appears that one might save on this. For some
graphs rearrangement is hardly needed after an initial phase,
but for others it must be performed until the end. It turns
out that r does not increase when nodes are rearranged af-
ter every second phase. Among other things, this guarantees
that it is performed at least once per round. The rearrange-
ment involves sorting (stable and in-situ). For longer adja-
cency lists we apply quick sort, which is optimized for the
fact that the frequency with which a given value is occurring
decreases with the value.

Another expensive procedure is the reduction. Particu-
larly for relatively sparse graphs this operation may weigh
heavy. It consists of two parts: figuring out which nodes can
be made passive and the actual edge reduction. The second
part is only performed if the number of active nodes has be-
come sufficiently smaller. Determining the nodes that can
be made passive involves the operation to determine that
roots are final; this requires a scan through all edges. This
operation is only performed if it was sufficiently effective
up till now. Furthermore, the whole reduction procedure is
only performed if, based on the recent development of the
number of active edges, it is deemed likely to lead to a reduc-
tion. Together these operations give a substantial reduction
for problems with slowly decreasing problem sizes.

3. PROGRAM
The program is written in C. Due to numerous added

features, the source code has grown to 120 KB. All large
data structures are maintained as files. IO is not left to the
virtual-memory manager, but done in an explicit way: if
new data are needed, they are read, if data must be saved,
they are written away. This IO is done in a buffered way,
with buffers which are so large (1 MB) that seek time (see
(1)) is negligible.

The program is complicated by our attempt to minimize
the internal memory consumption. This imposes an aggre-
sive reuse of memory space. Sometimes data are recom-
puted, sometimes they are temporarily written away on file.
The latest version of the program accesses at most three in-
teger arrays of size n at the same time plus three boolean
arrays. With four bytes per integer and one bit for each
boolean, this means that the program has an internal mem-

ory requirement of 12.375 · n bytes. Internally, the forest is
maintained as adjacency lists which are implemented in ar-
rays, requiring only n+m′ integers for a graph with n nodes
and m′ edges. An array implementation lacks the flexibility
of linked lists, but, in our case, saving internal memory is
more important. Another complication is caused by the fact
that not all systems allow files larger than 2 GB. We have
solved this problem by “fragmenting” a virtual file over sev-
eral real files. All relevant conventional IO operations have
a fragmented analogue for handling these.

Next to routines for generating graphs from a variety of
classes (see Section 4), there are routines for preprocessing,
evaluation and testing. The preprocessing includes

• renumbering nodes consecutively;

• eliminating multiple edges and self loops;

• randomizing the input file;

• making the graph undirected.

Renumbering the nodes consecutively is necessary when the
graph is given with arbitrary (positive integers) indices. For
a semi-external program it is essential that one can maintain
an array ranging over all node indices Practical graphs will
typically require this preprocessing. We apply a hashing idea
to implement this efficiently. The evaluation and testing
include

• checking the format of graphs which are read from file;

• computing maximum in- and outdegree and number of
nodes with zero in- or outdegree;

• specifying maximum and average depth of the nodes
in the forest;

• classifying the edges as: self loops, forward tree edges,
backward tree edges, forward cross edges and back-
ward cross edges (see Figure 2);

• reporting the sizes of the trees in the forest.

The edge classification allows to certify that the computed
forest is a DFS forest: it is correct if and only if there are
no forward cross edges.

4. GENERATED GRAPHS
We cannot give much of a performance guarantee (in prin-

ciple the algorithm may require up to n rounds). The main
argument in favor of our algorithm is that it really works,
and thereby solves problems that no one could solve before.

4.1 Graph Classes
The program comes with an built-in input generator for a

number of graph classes, which are described in the follow-
ing. Here we already give some qualitative remarks on the
performance of our algorithm for them. In Section 4.2 we
work this out in some more detail together with the discus-
sion of the figures. Recall that r denotes the ratio between
the total number of edges that are scanned and processed
in the internal DFS operations divided by m, the number of
edges in the input graph. Let g = m/n denote the average
number of edges per node.

Rand refers to random graphs [5] from the class Gn,m

where the 2 ·m endpoints of the edges are chosen uniformly
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Figure 3: Ratio r for inputs of the class RAND.
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Figure 4: Measurements for a graph from CF-Web

with about n = 106 nodes and m = 108 edges. The di-
agram shows the sum of scanned edges as a function
of the number of performed rounds (during a round
all remaining edges are processed once); the number
of edges scanned in each round; and the number of
active nodes. The fewer nodes are active during a
round the more edges can be pruned.

and independently from among the n nodes. Random graphs
are the easiest we know: already for small values of g, we
find r < 1. The class Geom-2d is a special variant of a
random geometric graphs [10]: the nodes of these graphs
are positioned on a two-dimensional torus and the probabil-
ity that a node gets an edge to another node at Manhattan
distance d decreases geometrically with d: for all d > 0, it
equals c · αd, where c is a normalization constant. It turns
out that the graphs from Geom-2d are among the easiest,
almost as easy as random graphs.
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Figure 5: Comparison between the r-values for CF-

Web and Simple-Web. The graphs of CF-Web are
generated with 2 ·m/

√
n random edges. In all graphs

of Simple-Web there are 0.02 ·n nodes with a random
edge.

The graphs of the class Geom-1d are constructed analo-
gously to those in Geom-2d, but here the nodes are posi-
tioned on a ring. Again the probability that an edge runs
over distance d equals c · αd. A deterministic variant of
this is given by the graphs from the class Cycle, where the
nodes are positioned on a ring in which each node has links
to all its g nearest neighbors. All indices are randomized
again. The graphs from Cycle are so regular that the al-
gorithm Minimize Tree Number described in Section 2.4 is
able to figure out the global structure. Thereafter it is just a
matter of eliminating shortcuts, which does not take many
rounds. Due to their more irregular structure, graphs from
Geom-1d aremuch harder to conquer. While graphs from
Geom-2d are very easy, those from Geom-1d the hardest
we know, and for very large n and specific choices of the
parameter α, the algorithm performs unsatisfactorily, with
values of r exceeding 100. Minimize Tree Number succeeds
in strongly reducing the number of trees, but does not al-
ways reduce it to one. Thereafter we have a situation that
is similar to the worst-case example of Section 2.4 (though
not entirely as bad). For Geom-1d it is better to perform a
stronger variant of Minimize Tree Number but for all other
classes of graphs, which appear to be more relevant, this
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would make the program slower. More subtle tuning might
help here.

r
rounds
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1

10

100

Figure 6: Comparison between the r-value and the
number of rounds for CF-Web. Observe that with
growing g the number of rounds grows faster than
the r-values.

The program also generates random graphs that model
the web graph. The recent literature provides many models
of this kind. The graph class CF-Web exactly follows the
description of Cooper and Frieze [9]. The idea is that with
certain probability one either creates a new node with edges
to the old nodes, or adds a number of outgoing edges to
an existing node. The probability that a node is selected as
source or destination increases with its degree. Simple-Web

denotes a similar graph type, which can be generated more
easily: starting with a small complete subgraph, new nodes
are connected to those already present. A small fraction of
the nodes has one edge leading to a node that is chosen at
random (not only leading to those already existing). There
is no degree-dependency. Acyc is a class with a similar
graph structure. These graphs are generated by choosing
all edges to run from nodes with large indices to nodes with
smaller indices, choosing first one endpoint uniformly at ran-
dom and then the other endpoint uniformly from among
all remaining possibilities. Afterwards, all indices are reas-
signed using a random permutation. Graphs from all these
classes have intermediate hardness, though those from CF-

Web, which are claimed to model the real web graph most
accurately, are somewhat easier. The graphs from CF-Web

and Simple-Web become really easy if there are slightly
more (10% is enough) edges from old nodes or nodes with
random edges, respectively.

Other built-in graph classes based on random graphs are
the following: for some parameter s, chosen by the user,
Out-Star generates a graph with m edges in m/s phases,
where in each phase a randomly selected node u gets out-
going edges to s randomly chosen nodes. In-Out-Star is
similar but here, during m/(2 · s) of the phases, the node
u gets s ingoing edges. The graphs from both classes are
relatively easy, generally with r values below 5. For small g,
the graphs from In-Out-Star tend to be somewhat harder
than those from Out-Star.

These graph classes represent very different types. Rand

and Geom-2d are more or less uniform (at least when look-
ing from a distance) and have a small diameter. Geom-1d

and Cycle are also uniform but have a very large diameter.
Information does not travel fast in graphs of this type. CF-

Web, Simple-Web and Acyc have a structure that mainly
or entirely consists of edges pointing down to a sink. These
trees are very wide and do not grow very deep. The star
graphs are irregular. Their DFS trees are strongly branch-
ing, and shallow, with most nodes at the deepest levels.
They almost look like BFS trees.
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Figure 7: The influence of the parameter α of the
Geom-1d class. For larger α the program performs
much better because of the better expansion prop-
erties of the graphs.

4.2 Experiments
In the following we report on the experimental behavior

of our algorithm for the above described classes of graphs.
We focus on demonstrating how r develops for varying input
parameters rather than testing single very large instances.
For the figures discussed in the following we mostly chose n
between 104 and 106, and g = m/n between 10 and 100. All
values are the average of at least three experiments.

Figure 3 provides a plot of the ratio r for the input class
RAND. r decreases noticeably with g. Interestingly, r ap-
pears to be independent of n. In the program, we first
perform O(g1/3) phases (the actual formula is of the form

a1+a2 ·g1/3, where a1 is negative to account for the positive
effect of the initial phase in which 3 · n edges are processed
together). After this, if the development of the forest looks
promising, the edges are filtered and for random graphs only
O(g1/3 · n) edges remain. The number of edges to process
hereafter is small, so the whole DFS search takes one scan
through all edges plus O(g1/3) phases.

In Figure 5 we compare the r-values for the random web
graph classes CP-Web and Simple-Web. The IO behavior
is quite different from the case of uniform random graphs:
first of all, r increases when the graphs become denser. Fur-
thermore, the dependence on n increases with the density
of the graph. Simple-Web requires about twice as much
IO as CP-Web. One should be aware though that in these
examples the degree of randomness decreases with g. If we
had fixed the fraction of random edges, then the graphs
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Figure 8: Plot of the r-values for inputs from the
Geom-2d class. In all cases we took α = 0.5.

would have looked more and more like random graphs with
increasing g and would have become easier and easier.

Figure 4 depicts how this IO is distributed over the rounds
of the algorithm. Furthermore, it demonstrates the depen-
dence between active nodes and scanned edges. The number
of active edges decreases faster than the number of active
nodes, because an edge is thrown out when one of its end-
points in passive. For most graphs this means that if there
are x · n active nodes left, that then the number if active
edges is reduced to x2 · n (but for non-uniform graphs the
nodes with lower degree tend to disappear first).
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Figure 9: Plot of the r-values for inputs from the
Cycle class.

In Figure 6 we demonstrate the relation between the num-
ber of scan phases and the total scan volume. For the graphs
from CF-Web it turns out that with growing degree the to-
tal volume increases much slower than the number of phases.

For these graphs the reductions are of crucial importance.
In the following we turn to the class Geom-1d. The per-

formance strongly depends on a the geometric decrease pa-
rameter α. Roughly speaking, the higher the chance that
nodes with larger distance are connected (large α) the smaller
the total IO. Furthermore, r crucially depends on the aver-
age node degree as well. In fact this dependence is not even
monotonic. Figure 7 demonstrates our observations for two
α values.

Much better performance was observed for the inputs
of the Geom-2d class, even for denser graphs; compare
Figure 8. They yield similar performance as pure random
graphs. We attribute this to the larger expansion properties
of Geom-2d as compared to Geom-1d.

ACYC

10000
100000

1e+06n 10

100

m/n

5

6

7

8

9

10

11

12

13

14

r

Figure 10: Plot of the r-values for inputs from the
Acyc class.
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Figure 11: Plots of the r-values for inputs from the
Out-Star and In-Out-Star classes. All experiments
performed with star degree s = 50.
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5. CALL GRAPHS
Real practical example might be even more convincing

than test on generated graphs, whatever diverse in structure
they may be. In this section we report on first experiences
of application of the program to call graphs of ATT.

We considered an ATT call multi-digraph that represented
21 consecutive days. This corresponds to about 7 billion
edges. From it we obtained a weighted directed graph of
triples (x, y,m(x, y)) where m(x, y) denotes the multiplicity
of the edge (x, y). This graph has over 350 million vertexes
and then partitioned the vertex set so that each vertex rep-
resents the first 7 digits of the original data and where the
multiplicites were aggregated correspondingly. The result-
ing graph really gives a macro-view of the original graph:
any strongly connected component of the original graph is
embedded in its strongly connected components.

The largest graph we were testing has n = 9,921,001 and
m = 268,419,306. The graph is extremely irregular, the
maximum in- and outdegree are 3,940,663 and 446,457, re-
spectively. At the same time there are 4,752,128 nodes with
outdegree zero. Though this graph does not look like a ran-
dom graph at all, our program has no problem to find DFS
forests for them. The two rounds of computation of the
strong components gave r values 5.85 and 3.42, respectively.
On a Pentium III with a 1 GHz clock frequence, the whole
computation of the strong components takes about 4 hours.
The structure found is quite surprising (though this might
be an artefact of the aggregation): except for a giant com-
ponent with 3,089,735 nodes and 6,795,261 components of
size 1, there are many components with size up to 10 and
even single components with sizes up to 21.

6. CONCLUSIONS
In this paper we have presented heuristics that effectively

deal with the semi-external DFS problem. r < 10, as we
achieve for most graphs, appears to be a good result, but
it leaves room for improvement. For some special classes,
such as the 1-dimensional geometric graphs, the current al-
gorithm is not very effective, and one may hope that ap-
proaches that deal with these graphs even lead to improve-
ments for other classes. One useful idea might be to rear-
range the order of the edges on the file. So far, these edges
have been processed in a purely cyclical way (only throwing
out edges that are not needed anymore). We tested the effect
of sorting this file on the initial node, this turned out to be
a bad idea. However, there might be other rearrangements
that do lead to improvements. Another interesting idea is
to try to parallelize the algorithm. This appears hard, be-
cause internal DFS cannot really be parallelized. Still, there
is some hope. For example, one might compute DFS trees
for disjoint or partially overlapping parts of the graph and
after this combine them somehow in order to come close to
the final solution. It is very likely that heuristics are also
effective for other semi-external problems. The only funda-
mental limitation appears to be that the answer must have
size O(n).
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