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Abstract. We present improved cache-oblivious data structures and
algorithms for breadth-first search and the single-source shortest path
problem on undirected graphs with non-negative edge weights. Our re-
sults removes the performance gap between the currently best cache-
aware algorithms for these problems and their cache-oblivious counter-
parts. Our shortest-path algorithm relies on a new data structure, called
bucket heap, which is the first cache-oblivious priority queue to efficiently
support a weak DecreaseKey operation.

1 Introduction

Breadth-first search (BFS) and the single-source shortest path (SSSP) problem
are fundamental combinatorial optimization problems with numerous applica-
tions. SSSP is defined as follows: Let G = (V, E) be a graph with V vertices
and E edges,1 let s be a distinguished vertex of G, and let ω be an assignment
of non-negative real weights to the edges of G. The weight of a path is the sum
of the weights of its edges. We want to find for every vertex v that is reachable
from s, the weight dist(s, v) of a minimum-weight (“shortest”) path from s to v.
BFS can be seen as the unweighted version of SSSP.

Both problems are well understood in the RAM model, where the cost of a
memory access is assumed to be independent of the accessed memory location.
However, modern computers contain a hierarchy of memory levels; the cost of
a memory access depends on the currently lowest memory level that contains
� Supported by the Carlsberg Foundation (contract number ANS-0257/20).

�� Partially supported by the Future and Emerging Technologies programme of the EU
under contract number IST-1999-14186 (ALCOM-FT).
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Furthermore, we will assume that E = Ω(V ), in order to simplify notation.
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the accessed element. This is not accounted for in the RAM model, and current
BFS and SSSP-algorithms, when run in memory hierarchies, turn out to be
notoriously inefficient for sparse input graphs. The purpose of this paper is to
provide improved data structures and algorithms for BFS and SSSP under the
currently most powerful model for multi-level memory hierarchies.

Models for memory hierarchies. The most widely used model for the design of
cache-aware algorithms is the I/O-model of Aggarwal and Vitter [2]. This model
assumes a memory hierarchy consisting of two levels; the lower level has size M ;
data is transferred between the two levels in blocks of B consecutive data items.
The complexity of an algorithm is the number of blocks transferred (I/Os). The
parameters M and B are assumed to be known to the algorithm. The strength
of the I/O-model is its simplicity, while it still adequately models the situation
when the I/Os between two levels of the memory hierarchy dominate the running
time of the algorithm; this is often the case when the size of the data significantly
exceeds the size of main memory. Cache-oblivious algorithms are designed to be
I/O-efficient without knowing M or B; that is, they are formulated in the RAM
model and analyzed in the I/O-model, assuming that the memory transfers are
performed by an optimal offline paging algorithm. Since the analysis holds for any
block and memory sizes, it holds for all levels of a multi-level memory hierarchy
(see [16] for details). Thus, the cache-oblivious model elegantly combines the
simplicity of the I/O-model with a coverage of the entire memory hierarchy.

A comprehensive list of results for the I/O-model have been obtained—see
[3,19,22] and the references therein. One of the fundamental facts is that, in the
I/O-model, comparison-based sorting of N elements takes Θ(Sort(N)) I/Os in
the worst case, where Sort(N) = N

B logM/B
N
B .

For the cache-oblivious model, Frigo et al. developed optimal cache-oblivious
algorithms for matrix multiplication, matrix transposition, fast Fourier trans-
form, and sorting [16]. The cache-oblivious sorting bound matches that for the
I/O-model: O(Sort(N)) I/Os. After the publication of [16], a number of results
for the cache-oblivious model have appeared; see [13,19] for recent surveys.

Some results in the cache-oblivious model, in particular those concerning sort-
ing and algorithms and data structures that can be used to sort, such as priority
queues, are proved under the assumption that M ≥ B2. This is also known as the
tall-cache assumption. In particular, this assumption is made in the Funnelsort
algorithm of Frigo et al. [16]. A variant termed Lazy-Funnelsort [6] works
under the weaker tall-cache assumption that M ≥ B1+ε, for any fixed ε > 0.
Recently, it has been shown [8] that a tall-cache assumption is necessary for
cache-oblivious comparison-based sorting algorithms.

Previous and related work. Graph algorithms for the I/O-model have received
considerable attention in recent years. Many efficient cache-aware algorithms
do have a cache-oblivious counterpart that achieves the same performance; see
Table 1. Despite these efforts, only little progress has been made on the so-
lution of the SSSP-problem with general non-negative edge weights using ei-
ther cache-aware or cache-oblivious algorithms: The best known lower bound is



482 G.S. Brodal et al.

Table 1. I/O-bounds for some fundamental graph problems.

Problem Best cache-oblivious result Best cache-aware result

List ranking O(Sort(V )) [4] O(Sort(V )) [11]

Euler Tour O(Sort(V )) [4] O(Sort(V )) [11]

Spanning tree/MST O(Sort(E) · log log V ) [4] O(Sort(E) · log log(V B/E)) [5]
O(Sort(E)) (randomized) [1] O(Sort(E)) (randomized) [1]

Undirected BFS O(V + Sort(E)) [21]
O(ST(E) + Sort(E)

+ E
B · log V +

√
V E/B) New O(ST(E) + Sort(E) +

√
V E/B) [18]

O(ST(E) + Sort(E)
+ E

B · 1
ε · log log V

+
√

V E/B · √
V B/E

ε) New

Directed BFS & DFS O((V + E/B) · log V + Sort(E)) [4] O((V + E/B) · log V + Sort(E)) [10]

Undirected SSSP O(V + (E/B) · log(E/B)) New O(V + (E/B) · log(E/B)) [17]

Ω(Sort(E)) I/Os, which can be obtained through a reduction from list ranking;
but the currently best algorithm [17] performs O(V + (E/B) log2(E/B)) I/Os
on undirected graphs. For E = O(V ), this is hardly better than näıvely running
Dijkstra’s internal-memory algorithm [14,15] in external memory, which would
take O(V log2 V + E) I/Os. On dense graphs, however, the algorithm is effi-
cient. The algorithm of [17] is not cache-oblivious, because the applied external-
memory priority queue based on the tournament tree is not cache-oblivious.
Cache-oblivious priority queues exist [4,7]; but none of them efficiently supports
a DecreaseKey operation. Indeed, the tournament tree is also the only cache-
aware priority queue that supports at least a weak form of this operation.

For bounded edge weights, an improved external-memory SSSP-algorithm
has been developed recently [20]. This algorithm is an extension of the cur-
rently best external-memory BFS-algorithm [18], Fast-BFS, which performs
O(

√
V E/B + Sort(E) + ST(E)) I/Os, where ST(E) is the number of I/Os re-

quired to compute a spanning tree (see Table 1). Again, the key data structure
used in Fast-BFS is not cache-oblivious, which is why the currently best cache-
oblivious BFS-algorithm is that of [21].

Our results. In Section 2, we develop the first cache-oblivious priority queue,
called bucket heap, that supports an Update operation, which is a combined
Insert and DecreaseKey operation. The amortized cost of operations Up-
date, Delete, and DeleteMin is O((1/B) log2(N/B)) where N is the number
of distinct elements in the priority-queue. Using the bucket heap, we obtain a
cache-oblivious shortest-path algorithm for undirected graphs with non-negative
edge weights that matches the performance of the best cache-aware algorithm
for this problem: O(V + (E/B) log2(E/B)) I/Os. Independently of our work,
the bucket heap as well as a cache-oblivious version of the tournament tree have
simultaneously been developed by Chowdhury and Ramachandran [12].
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In Section 3, we develop a new cache-oblivious algorithm for undirected BFS.
The algorithm comes in two variants: The first variant performs O(ST(E) +
Sort(E) + E

B log V +
√

V E/B) I/Os; the second variant performs O(ST(E) +
Sort(E) + E

B ·
1
ε · log log V +

√
V E/B ·

√
V B/E

ε
) I/Os, for any ε > 0. Here,

ST(E) denotes the cost of cache-obliviously finding a spanning tree.

2 The Bucket Heap and Undirected Shortest Paths

In this section, we describe the bucket heap, which is a priority queue that sup-
ports an Update (a weak DecreaseKey) operation and does so in the same
I/O-bound as the tournament tree of [17]. Using the bucket heap, the SSSP-
algorithm of [17] becomes cache-oblivious. Similar to the tournament tree, the
bucket heap supports the following three operations, where we refer to an ele-
ment x with priority p as element (x, p):

Update(x, p) inserts element (x, p) into the priority queue if x is not in the pri-
ority queue; otherwise, it replaces the current element (x, p′) in the priority
queue with (x,min(p, p′)).

Delete(x) removes element x from the priority queue.
DeleteMin removes and reports the minimal element in the priority queue.

The bucket heap consists of q buckets B1,B2, . . . ,Bq and q + 1 signal buffers
S1,S2, . . . ,Sq+1, where q varies over time, but is always at most �log4 N�. The
capacity of bucket Bi is 22i; buffer Si has capacity 22i−1. In order to allow for
temporary overflow, we allocate 22i+1 memory locations for bucket Bi and 22i

memory locations for buffer Si. We store all buckets and buffers consecutively
in memory, in the following order: S1,B1,S2,B2, . . . ,Sq,Bq,Sq+1.

Buckets B1,B2, . . . ,Bq store the elements currently in the priority queue. We
maintain the invariant that for any two buckets Bi and Bj with i < j and any
two elements (x, p) ∈ Bi and (y, q) ∈ Bj , p ≤ q.

Buffers S1,S2, . . . ,Sq+1 store three types of signals, which we use to update
the bucket contents in a lazy manner: Update(x, p) and Delete(x) signals
are used to implement Update(x, p) and Delete(x) operations. A Push(x, p)
signal is used to push elements from a bucket Bi to a bucket Bi+1 when Bi

overflows. Every signal has a time stamp corresponding to the time when the
operation posting this signal was performed. The time stamp of an element in a
bucket is the time stamp of the Update signal that led to its insertion.

The three priority queue operations are implemented as follows: A Delete-
Min operation uses the Fill operation below to make sure that bucket B1 is
non-empty and, hence, contains the element with lowest priority. This element
is removed and returned. An Update(x, p) or Delete(x) operation inserts the
corresponding signal into S1 and empties S1 using the Empty operation below.
Essentially, all the work to update the contents of the bucket heap is delegated
to two auxiliary procedures: Procedure Empty(Si) empties the signal buffer Si,
applies these signals to bucket Bi, and inserts appropriate signals into buffer Si+1.
If this leads to an overflow of buffer Si+1, the procedure is applied recursively
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to Si+1. Procedure Fill(Bi) fills an underfull bucket Bi with the smallest 22i

elements in buckets Bi, . . . ,Bq. The details of these procedures are as follows:

Empty(Si)
1 If i = q + 1, then increase q by one and create two new arrays Bq and Sq+1.
2 Scan bucket Bi to determine the maximal priority p′ of the elements in Bi.

(If i = q and Sq+1 = ∅, then p′ =∞. Otherwise, if Bi = ∅, then p′ = −∞.)
3 Scan buckets Si and Bi simultaneously and perform the following operations

for each signal in Si:
Update(x, p): If Bi contains an element (x, p′′), replace this element with

(x,min(p, p′′)) and mark the Update(x, p) signal in Si as handled. If x is
not in Bi, but p ≤ p′, insert (x, p) into Bi and replace the Update(x, p)
signal with a Delete(x) signal. If x is not in Bi and p > p′, do nothing.

Push(x, p): If there is an element (x, p′′) in Bi, replace it with (x, p). Oth-
erwise, insert (x, p) into Bi. Mark the Push(x, p) signal as handled.

Delete(x): If element x is in Bi, delete it.
4 If i < q or Si+1 is non-empty, then scan buffers Si and Si+1 and insert all

unhandled signals in Si into Si+1. Si ← ∅
5 If |Bi| > 22i, then find the 22i-th smallest priority p in Bi. Scan bucket
Bi and buffer Si+1 twice: The first scan removes all elements with priority
greater than p from Bi and inserts corresponding Push signals into Si+1.
The second scan removes |Bi| − 22i elements with priority p from Bi and
inserts corresponding Push signals into Si+1.

6 If |Si+1| > 22i+1, then Empty(Si+1)

Fill(Bi)
1 Empty(Si)
2 If |Bi+1| < 22i and i < q, then Fill(Bi+1)
3 Find the (22i− |Bi|)-th smallest priority p in Bi+1. Scan Bi and Bi+1 twice.

The first scan moves all elements with priority less than p from Bi+1 to Bi.
The second scan moves the correct number of elements with priority p from
Bi+1 to Bi so that Bi contains 22i elements or Bi+1 is empty at the end.

4 q ← max{j : Bj or Sj+1 is non-empty}

2.1 Correctness

A priority queue is correct if, given a sequence o1, o2, . . . , ot of priority queue
operations, every DeleteMin operation oi returns the smallest element in the
set Oi−1 constructed by operations o1, . . . , oi−1 according to their definitions at
the beginning of this section. In the following we use the term “element at level
j” to refer to an element in bucket Bj or to an Update signal in buffer Sj . We
say that a Delete(x) signal in a buffer Si hides an element (x, p) at level j if
i ≤ j and the time stamp of the Delete(x) signal is greater than the time stamp
of element (x, p). An element (x, p′) hides an element (x, p) if it is not hidden by
a Delete(x) signal and p′ < p. An element that is not hidden is visible.
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Observe that a hidden element can never be returned by a DeleteMin oper-
ation. Hence, it suffices to show that the set Vi of elements that are visible after
applying operations o1, o2, . . . , oi equals the set Oi and that every DeleteMin
operation returns the minimal element in the current set of visible elements.

Lemma 1. A DeleteMin operation oi returns the minimal element in Vi−1.

Proof. We have already observed that the returned element (y, q) is in Vi−1.
If (x, p) is the smallest visible element and q > p, we distinguish a number of
cases: Let i be the current level of element (x, p), and let j be the current level of
element (y, q). If i ≤ j, then element (x, p) will move to lower buckets before or
at the same time as (y, q). Hence, (x, p) would have to be returned before (y, q),
a contradiction. If j < i, we observe that element (y, q) can only be represented
by an Update(y, q) signal in Sj because neither bucket Bi nor buffer Si can
contain elements with priorities less than those of the elements in Bj . Hence,
before (y, q) can be moved to a bucket and ultimately returned, we must reach
the case i ≤ j, in which case we would return (x, p) first, as argued above. 	


Lemma 2. For any sequence o1, o2, . . . , ot and any 1 ≤ i ≤ t, Vi = Oi.

Proof. The proof is by induction on i. For i = 0, the claim holds because Oi and
Vi are empty. So assume that i > 0 and that Vi−1 = Oi−1. If oi is a DeleteMin
operation, it removes and returns the minimum element (x, p) in Vi−1, so that
Vi = Vi−1 \ {(x, p)} = Oi−1 \ {(x, p)} = Oi. If oi is a Delete(x) operation, its
insertion into S1 hides all copies of x in the priority queue. Hence, Vi = Vi−1 \
{x} = Oi−1 \ {x} = Oi. If oi is an Update(x, p) operation, we distinguish three
cases: If x is not in Oi−1, there is no element (x, p′) that hides the Update(x, p)
signal. Hence, Vi = Vi−1∪{(x, p)} = Oi−1∪{(x, p)} = Oi. If there is an element
(x, p′) in Oi−1 and p′ < p, element (x, p′) hides the Update(x, p) signal, and
Vi = Vi−1 = Oi−1 = Oi. If p′ > p, the Update(x, p) signal hides element (x, p′),
and Vi = (Vi−1 \ {(x, p′)}) ∪ {(x, p)} = (Oi−1 \ {(x, p′)}) ∪ {(x, p)} = Oi. 	


2.2 Analysis

We assume that every element has a unique ID drawn from a total order and
keep the elements in each bucket or buffer sorted by their IDs. This invariant
allows us to perform updates by scanning buckets and buffers as in the descrip-
tion of procedures Empty and Fill. The amortized cost per scanned element
is hence O(1/B). In our analysis of the amortized complexity of the priority
queue operations, we assume that M = Ω(B), large enough to hold the first
log4 B buckets and buffers plus one cache block per stream that we scan. Under
this assumption, operations Update, Delete, and DeleteMin, excluding the
calls to Empty and Fill, do not cause any I/Os because bucket B1 and buffer
S1 are always in cache. We have to charge the I/Os incurred by Empty and
Fill operations to Update and Delete operations in such a manner that no
operation is charged for more than O((1/B) log2(N/B)) I/Os. To achieve this,
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we define the following potential function, where U , D, and P are the numbers
of Update, Delete, and Push signals in buffers S1,S2, . . . ,Sq:

Φ = (3U + D + 2P )(log4(N/B) + 3) +
q∑

i=log4 B

(
(|Bi| − |Si|) · (i− log4 B) + 22i

)

Since the actual cost of an Update or Delete operation is 0 and each of them
increases the potential by O(log2(N/B)), the amortized cost of these operations
is O((1/B) log2(N/B)) if we can show that all I/Os incurred by Fill and Empty
operations can be paid by a sufficient potential decrease, where a potential de-
crease of Ω(B) is necessary to pay for a single I/O.

We distinguish two types of Empty operations: A regular Empty(Si) oper-
ation is one with |Si| > 22i−1. If |Si| ≤ 22i−1, the operation is early. The latter
type of Empty(Si) operation may by triggered by a Fill(Bi) operation.

First consider a regular Empty(Si) operation, where i ≤ q. If i < log4 B,
the operation causes no I/Os—because Si, Si+1, and Bi are in cache—and the
potential does not increase. If i ≥ log4 B, the cost is bounded by O(22i−1/B)
because only buffers Si and Si+1 and bucket Bi are scanned. Let k be the increase
of the size of bucket Bi, let u, p, and d be the number of Update, Push, and
Delete operations in Si, and let u′, p′, and d′ be the number of such operations
inserted into Si+1. Then we have u + d + p = |Si| > 22i−1. From the description
of the Empty operation, we obtain that u + d = u′ + d′ and k + u′ + p′ ≤ u + p.
The change of potential is ∆Φ ≤ (3u′ + d′ + 2p′ − 3u − d − 2p)(log4(N/B) +
3) + (u + d + p + k)(i− log4 B)− (u′ + d′ + p′)(i + 1− log4 B). Using elementary
transformations, this gives ∆Φ ≤ −22i−1.

If i = q + 1, the actual cost of a regular Empty(Si) operation remains the
same, but the change of potential is ∆Φ ≤ −(3u+d+2p)(log4(N/B)+3)+(u+
d + p + k)(i− log4 B) + 22i. Again, this can be bounded by ∆Φ ≤ −22i−1.

Next we show that the cost of Fill and early Empty operations can be
paid by a sufficient decrease of the potential Φ. Consider a Fill(B1) operation,
and let j be the highest index such that a Fill(Bj) operation is triggered by
this Fill(B1) operation. Then the cost of all Fill and early Empty operations
triggered by this Fill(B1) operation is O(22j/B). If there are new elements
inserted into the buckets during the Empty operations, a similar analysis as for
regular Empty operations shows that the resulting potential change is zero or
negative. Hence, it suffices to show that, excluding these insertions, the potential
decreases by Ω(22j). We distinguish two cases. if q does not change, then the
Fill(Bj) operation moves at least 3 · 22j−2 elements from Bj+1 to Bj , which
results in the desired potential decrease. If q decreases, then q > j before the
Fill(B1) operation and q decreases by at least one. This results in a potential
decrease of at least 22q ≥ 22j . Hence, we obtain the following result.

Theorem 1. The bucket heap supports the operations Update, Delete, and
DeleteMin at an amortized cost of O((1/B) log2(N/B)) I/Os.

The shortest path algorithm of [17] is cache-oblivious, except for its use of a
cache-aware priority queue: the tournament tree. Since the bucket heap is cache-
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oblivious and achieves the same I/O-bound as the tournament tree, we obtain
the following result by replacing the tournament tree with the bucket heap.

Corollary 1. There exists a cache-oblivious algorithm that solves the single-
source shortest path problem on an undirected graph G = (V, E) with non-
negative edge weights and incurs at most O(V + (E/B) log2(E/B)) I/Os.

3 Cache-Oblivious Breadth-First Search

In this section, we develop a cache-oblivious version of the undirected BFS-
algorithm from [18]. As in [18], the actual BFS-algorithm is the one from [21],
which generates the BFS levels one by one, using that, in an undirected graph,
Li+1 = N (Li)\(Li∪Li−1), whereN (S) is the set of nodes2 that are neighbours of
nodes in S, and Li is the set of nodes of the i’th level of the BFS tree with root s.
The algorithm from [21] relies only on sorting and scanning and, hence, can be
implemented cache-obliviously; this gives the cache-oblivious O(V + Sort(E))
result from Table 1. The speed-up in [18] over [21] is due to a data structure
which, for a query set S, returns N (S). The data structure does this in an I/O-
efficient manner by exploiting that the query sets are the levels L0, L1, L2, . . . of
a BFS traversal. We provide a cache-obliviously version of this data structure.

3.1 The Data Structure

To construct the data structure, we first build a spanning tree for G and then
construct an Euler tour T for the tree (using [4]). Next, we assign (by scanning
and sorting) to each node v the rank in T of the first occurrence of v, and denote
this value r(v). As T has length 2V − 1, we have r(v) ∈ [0; 2V − 2].

Observation 1 ([18]). If for two nodes u and v the values r(v) and r(u) differ
by d, then a section of the Euler tour constitute a path in G of length d connecting
u and v; hence, d is an upper bound on the distance between their BFS levels.

Let g0 < g1 < g2 < · · · < gh be an increasing sequence of h+1 integers where
g0 = 1, gh−1 < 2V − 2 ≤ gh, and gi divides gi+1. We will later consider two
specific sequences, namely gi = 2i and one for which gi = Θ(2(1+ε)i

). For each
integer gi, we can partition the nodes into groups of at most gi nodes each by
letting the k’th group Vki be all nodes v for which kgi ≤ r(v) < (k+1)gi. We call
a group Vki of nodes a gi-node-group and call its set of adjacency lists N (Vki) a
gi-edge-group. Since gi divides gi+1, the groups form a hierarchy of h + 1 levels,
with level h containing one group with all nodes and level 0 containing 2V − 1
groups of at most one node.

The data structure consists of h levels G1, . . . , Gh, where each level stores
a subset of the adjacency lists of the graph G. Each adjacency list N (v) will
appear in exactly one of the levels, unless it has been removed from the structure.
2 As shorthand for N ({v}) we will use N (v).
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Since the query sets of the BFS-algorithm are the BFS-levels L0, L1, L2, . . . , each
node v is part of a query set S exactly once. Its adjacency list N (v) will leave
the data structure when this happens.

Initially, all adjacency lists are in level h. Over time, the query proce-
dure GetEdgeLists moves the adjacency list of each node from higher num-
bered to lower numbered levels, until the adjacency list eventually reaches level
G1 and is removed. GetEdgeLists is a recursive procedure that takes as input
a query set S of nodes and a level number i to query. The output consists of
the gi−1-edge-groups stored at level Gi for which the corresponding gi−1-node-
group contains one or more nodes in S. The BFS-algorithm will query the data
structure by calling GetEdgeLists(S, 1), which will return N (v), for all v in
S.

GetEdgeLists(S, i)
1 S′ ← {v ∈ S | N (v) is not stored in level Gi}
2 if S′ �= ∅:
3 X ← GetEdgeLists(S′, i + 1)
4 for each gi-edge-group g in X
5 insert g in Gi

6 for each gi−1-edge-group γ in Gi containing N (v) for some v ∈ S
7 remove γ from Gi

8 include γ in the output set

Next we describe how we represent a level Gi so that GetEdgeLists can
be performed efficiently. By induction on time, it is clear that the edges stored
in level Gi always constitute a set of gi-edge-groups from each of which zero or
more gi−1-edge-groups have been removed. Since gi−1 divides gi, the part of a
gi-edge-group residing at level Gi is a collection of gi−1-edge-groups. We store
the adjacency lists of level Gi in an array Bi. Each gi−1-edge-group is stored in
consecutive locations of Bi, and the adjacency lists N (v) of a gi−1-edge-group
occupy these locations in order of increasing ranks r(v). The gi−1-edge-groups
of each gi-edge-group are also stored in order of increasing ranks of the nodes
involved, but empty locations may exist between the gi−1-edge-groups. However,
the entire array Bi will have a number of locations which is at most a constant
times the number of edges it contains. This will require Bi to shrink and grow
appropriately. The arrays B1, B2, . . . , Bh will be laid out in O(E) consecutive
memory locations. Due to space restrictions, we refer to the full version [9] of the
paper for a description of how to maintain this layout at sufficiently low cost.

In order to keep track of the gi-edge-groups within Bi we maintain an in-
dex Ai, which is an array of entries (k, p), one for every gi-edge-group present
in Gi. Here k is the number of the corresponding gi-node-group Vki, and p is a
pointer to the start of the gi-edge-group in Bi. The entries of Ai are sorted by
their first components. The indexes A1, A2, . . . , Ah occupy consecutive locations
of one of two arrays A′ and A′′ of size O(V ). Finally, every gi-edge-group g of a
level Gi will contain an index of the gi−1-edge-groups it presently contains. This
index consists of the first and last edge of each gi−1-edge-group γ together with
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pointers to the first and last locations of the rest of γ. These edges are kept at
the front of g, in the same order as the gi−1-edge-groups to which they belong.

We now describe how each step of GetEdgeLists is performed. We assume
that every query set S of nodes is sorted by assigned rank r(v), which can be
ensured by sorting the initial query set before the first call. In line 1 of the
algorithm, we find S′ by simultaneously scanning S and Ai, using that, if (k, p)
is an entry of Ai, all nodes v ∈ S for which kgi ≤ r(v) < (k + 1)gi will have
N (v) residing in the gi-edge-group pointed to by p (otherwise, N (v) would have
been found earlier in the recursion, i.e. for a smaller i, and v would have been
removed from S). In short, S′ is the subset of S not covered by the entries in Ai.

In line 5, when a gi-edge-group g is to be inserted into level Gi, the index
of the gi−1-edge-groups of g is generated by scanning g, and g (now with the
index) is appended to Bi. An entry for Ai is generated. When the for-loop in
line 4 is finished, the set of new Ai entries are sorted by their first components
and merged with the current Ai. Specifically, the merging writes Ai to A′′ if Ai

currently occupies A′, and vice versa, implying that the location of the entire
set of Ai’s alternates between A′ and A′′ for each call GetEdgeLists(S, 1).

In line 6, we scan S and the updated Ai to find the entries (k, p) pointing to
the relevant gi-edge-groups of the updated Bi. During the scan of a group g, we
generate a pair (v, p) for each of the gi−1-edge-groups γ inside g that contains
one or more nodes from S, where v is the first node in γ and p is the pointer to g.
These pairs are now sorted in reverse lexicographic order (the second component
is most significant), so that the gi-edge-groups can be accessed in the same order
as they are located in Bi. For each such group g, we scan its index to find the
relevant gi−1-edge-groups and access these in the order of the index. Each gi−1-
edge-group is removed from its location in Bi (leaving empty positions) and
placed in the output set. We also remove its entry in the index of g. The I/O-
bound of this process is the minimum I/O-bound of a scan of Bi and a scan of
each of the moved gi−1-edge-groups.

3.2 Analysis

In the following we analyze the number of I/Os performed by our cache-oblivious
BFS-algorithm, assuming that the management of the layout of the Bi’s can be
done efficiently (for this, see [9]). The underlying BFS-algorithm from [21] scans
each BFS-level Li twice: once while constructing Li+1 and once while construct-
ing Li+2, causing a total of O(V/B) I/Os for all lists Li. Edges extracted from
the data structure storing the adjacency lists are sorted and scanned for filtering
out duplicates and already discovered nodes, causing a total of O(Sort(E)) I/Os.

We now turn to the I/Os performed during queries of the data structure
storing the adjacency lists. The cost for constructing the initial spanning tree
is O(ST(E)); the Euler tour can be constructed in O(Sort(V )) I/Os [4]. As-
signing ranks to nodes and labeling the edges with the assigned ranks requires
further O(Sort(E)) I/Os. The total preprocessing of the data structure hence
costs O(ST(E) + Sort(E)) I/Os.



490 G.S. Brodal et al.

For each query from the basic BFS-algorithm, the query algorithm for the
data structure accesses the Ai and Bi lists. We first consider the number of I/Os
for handling the Ai lists. During a query, the algorithm scans each Ai list at
most a constant number of times: to identify which gi-edge-groups to extract
recursively from Bi+1; to merge Ai with new entries extracted recursively; and
to identify the gi−1-edge-groups to extract from Bi. The number of distinct
gi-edge-groups is 2V/gi. Each group is inserted into level Gi at most once. By
Observation 1, when a gi-edge-group is inserted into level Gi, it will become
part of an initial query set S within gi queries from the basic BFS-algorithm,
that is, within the next gi BFS-levels; at this time, it will be removed from
the structure. In particular, it will reside in level Gi for at most gi queries.
We conclude that the total cost of scanning Ai during the complete run of the
algorithm is O((2V/gi) · gi/B), implying a total number of O(h · V/B) I/Os for
scanning all Ai lists. This bound holds because the Ai’s are stored in consecutive
memory locations, which can be considered to be scanned in a single scan during
a query from the basic BFS-algorithm. Since each node is part of exactly one
query set of the basic BFS-algorithm, the total I/O cost for scanning the S sets
during all recursive calls is also O(h · V/B).

We now bound the sorting cost caused during the recursive extraction of
groups. The pointer to each gi-edge-group participates in two sorting steps:
When the group is moved from level i + 1 to level i, the pairs generated when
scanning Ai+1 are sorted before accessing Bi+1; when the gi-edge-group has
been extracted from Bi+1, the pointers to extracted groups are sorted before
they are merged into Ai. We conclude that the total sorting cost is bounded
by O(

∑h
i=0 Sort(2V/gi)) which is O(Sort(V )), since gi is at least exponentially

increasing for both of the two sequences considered.
Finally, we need to bound the I/O cost of accessing the Bi lists. For each query

of the basic BFS-algorithm, these will be accessed in the order Bh, Bh−1, . . . , B1.
Let t be any integer for which 1 ≤ t ≤ h. The cost of accessing Bt, . . . , B1 during
a query is bounded by the cost of scanning Bt, . . . , B1. Since an edge in Bi can
only remain in Bi for gi queries from the basic BFS-algorithm, we get a bound
on the total I/O cost for B1, . . . , Bt of O(

∑t
i=1 gi ·E/B), which is O(gt ·E/B)

since gi is at least exponentially increasing. To bound the cost of accessing
Bh, . . . , Bt+1, we note that the number of I/Os for moving a gi-edge-group list
containing k edges from Bi+1 to Bi is bounded by O(1 + k/B + gi+1/(giB)),
where gi+1/gi is the bound of the size of the index of a gi+1-edge-group. Since
the number of gi-edge-groups is bounded by 2V/gi, the I/O cost for accessing
Bh, . . . , Bt+1 is bounded by O(

∑h−1
i=t (2V/gi + E/B + (2V/gi) · gi+1/(giB)) =

O(V/gt+h·E/B), since gi+1 ≤ g2
i holds for both of the two sequences considered

(when 0 < ε ≤ 1). The total cost of accessing all Bi is, hence, O(gt · E/B +
V/gt + h · E/B), for all 1 ≤ t ≤ h. Adding all the bounds above gives a bound
of O(ST(E) + Sort(E) + gt · E/B + V/gt + h · E/B) on the total number of of
I/Os incurred by the query algorithm, for all 1 ≤ t ≤ h.

For gi = 2i, we select gt = Θ(
√

V B/E) and have h = Θ(log V ), so the I/O-
bound becomes O(ST(E) + Sort(E) + E

B log V +
√

V E/B). For gi = Θ(2(1+ε)i

),
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we select the smallest gt ≥
√

V B/E, i.e. gt ≤
√

V B/E
1+ε

, and have h =
Θ( 1

ε log log V ), so the I/O-bound becomes O(ST(E)+Sort(E)+ E
B ·

1
ε · log log V +√

V E/B ·
√

V B/E
ε
).
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